Integrated optical waveguide and nanoparticle based label-free molecular biosensing concepts

Rainer Hainberger, Paul Muellner, Eva Melnik, Markus Wellenzohn, Roman Bruck, Joerg Schotter, Stefan Schrittwieser, Michael Waldow, Thorsten Wahlbrink, Guenther Koppitsch, Franz Schrank, Katerina Soulantica, Sergio Lentijo, Beatriz Pelaz, Wolfgang Parak

Research output: Contribution to conference (No Proceedings)Paper

Abstract

We present our developments on integrated optical waveguide based as well as on magnetic nanoparticle based label-free biosensor concepts. With respect to integrated optical waveguide devices, evanescent wave sensing by means of Mach- Zehnder interferometers are used as biosensing components. We describe three different approaches: a) silicon photonic wire waveguides enabling on-chip wavelength division multiplexing, b) utilization of slow light in silicon photonic crystal defect waveguides operated in the 1.3 μm wavelength regime, and c) silicon nitride photonics wire waveguide devices compatible with on-chip photodiode integration operated in the 0.85 μm wavelength regime. The nanoparticle based approach relies on a plasmon-optical detection of the hydrodynamic properties of magnetic-core/gold-shell nanorods immersed in the sample solution. The hybrid nanorods are rotated within an externally applied magnetic field and their rotation optically monitored. When target molecules bind to the surfaces of the nanorods their hydrodynamic volumes increase, which directly translates into a change of the optical signal. This approach possesses the potential to enable real-time measurements with only minimal sample preparation requirements, thus presenting a promising point-of- care diagnostic system.
Original languageEnglish
Pages893305
DOIs
Publication statusPublished - 18 Mar 2014
Externally publishedYes

Fingerprint

Dive into the research topics of 'Integrated optical waveguide and nanoparticle based label-free molecular biosensing concepts'. Together they form a unique fingerprint.

Cite this