Development of a magnetoresistive biosensor for the detection of biomolecules

Research output: Types of ThesisDoctoral Thesis

Abstract

In this thesis, a new sensing scheme for biomolecules is presented that combines sub-micron sized magnetic markers and magnetoresistive sensors into a magnetic biochip. The molecules of interest are hybridized to surface-immobilized probes and get specifically labeled by magnetic markers. Afterwards, the stray fields of the magnetic markers are detected as a resistance change by an embedded magnetoresistive sensor. Each sensor element covers the area of a typical probe DNA spot, and over 200 sensor elements are integrated into a magnetic biosensor prototype, thus making it compatible to standard DNA microarray applications. The properties of different commercially available magnetic particles are investigated and compared with respect to their suitability for magnetic biosensor applications. Sensors based both on giant and tunneling magnetoresistance are presented, and their response to local stray fields induced by magnetic markers on their surface is studied. DNA hybridization experiments are presented that prove that our prototype magnetic biosensor can detect complex DNA with a length of one thousand bases down to a concentration of about 20 pM. A direct comparison of the magnetoresistive and a fluorescent detection methods shows that our magnetic biosensor is superior to standard fluorescent detection at low DNA concentrations. Furthermore, the magnetic biosensor has compact size and directly translates the abundance of desired biomolecules into an electronic signal, thus making it a very promising choice for the detection unit of future lab-on-a-chip devices.
Original languageEnglish
QualificationDoctor of Philosophy
Award date17 Dec 2004
Publication statusPublished - 2004
Externally publishedYes

Fingerprint

Dive into the research topics of 'Development of a magnetoresistive biosensor for the detection of biomolecules'. Together they form a unique fingerprint.

Cite this