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Abstract

Solar-based Distributed Generation (DG) powered Electric Vehicles (EVs) charging sta-
tions are widely adopted nowadays in the power system networks. In this process, the
distribution grid faces various challenges caused by intermittent solar irradiance, peak EVs
load, while controlling the state of charge (SoC) of batteries during dis(charging) phenom-
ena. In this paper, an intelligent energy management scheme (IEMS)-based coordinated
control for photovoltaic (PV)-based EVs charging stations is proposed. The proposed
IEMS optimizes the PV generation and grid power utilization for EV charging stations
(EVCS) by analysing real-time meteorological and load demand data. The coordinated
control of EMS provides power flow between PV generation, distribution grid, and EVs
battery storage in a manner which results in the reduction of peak power demand by a fac-
tor of two. Further, the adaptive neuro-based fuzzy control approach includes forecasting
solar-based electricity generation and EVs loads demand predictions to optimize IEMS
according to the Indian power scenario. The proposed IEMS optimally utilizes the buffer
batteries system for reducing the peak electricity demand with low system losses and reduc-
ing the impact of EVs charging load on distribution grid. The results are analysed using the
digital simulation model and validated with real-time hardware-in-loop experimental setup.

1 INTRODUCTION

The fast adoption of Electric Vehicle charging stations (EVCS)
and extensive installation of photovoltaic (PV) plants possess
huge challenges for the power flow control, especially in inter-
mittent PV-based distribution generation (DG) penetration in
the distribution grid [1]. During peak power demands, the con-
ventional control scheme is not able to deliver the required
power; also it is not capable of storing surplus solar-generated
energy in the battery storage system (BSS) [2]. To deal with
excess power demand and intermittent PV generation, up-
gradation of the distribution network may not be cost-effective.
Thus, it can be said that such a large capacity battery will reduce
the impact on the grid but increase the overall cost of the sys-
tem. In order to achieve optimal scheduling of EV charging and
solar PV energy according to the current distribution network,
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the better utilization of solar-powered EVCS with a backup BSS
is an effective way to maintain the charging load, improve the
distribution grid stability, and maintain an uninterrupted power
flow for EVCS [3]. Presently, the EVs charging/discharging
coordinated control is accomplished with different levels of
EVCS at different stages, namely AC (level 1/2/higher) [4],
DC fast (level 1/2/3) [5], and DC ultra-charging [6]. The
AC level 1 (1.4−2.4 kW) is used in homes/offices, and AC
level 2 (7.7−25.6 kW) onboard charging is deployed in pri-
vate or public outlets. Fast DC (up to 240 kW) offboard
charging is mainly used in commercial, conventional filling sta-
tion, and office areas [7]. In the literature [8], only a small
number of PV-based EVCS with BSS devices have been mod-
elled, and mostly these stations instantly replenish the batteries
after each charge cycle. For the day ahead energy management
schemes (EMS), only few research has accounted for PV power
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2 AMIR ET AL.

prediction with EV charging load forecasting. Most of the PV-
based EVCS with buffers BSS have not been depicted and also
were not incorporated with accurate PV generation prediction
and EV load demand estimation into their optimal EMS [9].
At present, PV-based EVCS with buffer BSS operate with an
always full-recharged battery or are immediately recharged to a
fixed state of charge (SoC) from PV power and/or the local
grid after each charging event. The PV-powered EVCS with
buffer storage decreases the local grid peak power demand. But
uncoordinated system with inconsistency in DGs forecasts may
lead to unscheduled charge of the buffer storage, further EV
charging load consumes more power without the PV power
availability.

The growing solar PV-based renewable energy generation
has decreased the burden on the modern grid system and offers
a consistent and reliable power supply to the EVs load [10]. On
the other hand, the solar-powered PV generations introduced
an option for the electricity consumers and power utilities to
operate in standalone (SA) and/or grid-connected (GC) opera-
tional modes [11]. The EVs load with deregulated power system
delivers the complex operational situations for the distribution
companies (DISCOs), that is, during EVs load synchronization
with the grid [12]. Whenever the PV system is operating in
the GC mode, there should be a necessity for voltage as well
as frequency synchronization [13, 14]. In case of an uninten-
tional grid fault, the DGs separate from the utility grid and the
backup storage system maintains the additional EVs charging
load. Moreover, when the load demand surpasses the PV gen-
eration capacity then the grid feeds excess electricity to the EVs
load during GC mode and at the same time need to be grid oper-
ation is in a constant mode without any interruption. In another
study, the adaptive neuro-fuzzy interface system (ANFIS) con-
troller produces the reference values based on the grid voltage
(vg ) and the grid current (ig ) [15]. While in the SA mode, the
ANFIS controller produces the reference values internally as
per the PV data and EV charging load demand. The various
traditional charging strategies adhere to the charging interfaces
with novel strategies available for minimizing the impact of
EVCS on the distribution grid being discussed [16]. The inves-
tigation of research gap for different control approaches in
comparison with the existing literature [17–23] is presented in
Table 1.

The investigation of the control strategies for PV-powered
EVCS control in terms of similarities and differences is as fol-
lows: In [18], the fuzzy inference system (FIS) was designed for
the grid synchronization technique in the GC and SA modes
using the droop controller; however, in our proposed work, an
unintentional islanding detection and its classification in dis-
tributed sources is an add-on feature as compared with [18].
Further in [23], a deep neural network (DNN)-based short-
term forecast model of EVs load demand was designed. But
it is suitable for only grid to vehicle (G2V) operation. Reducing
the power demand burden on the local grid during EV charg-
ing events is a major similarity for different control approaches.
The proposed intelligent energy management scheme (IEMS)
feeds the PV power to the EVs charging load, and at the same
time surplus electricity is supplied to the utility grid. Data over-

fitting is a major problem to check the errors in the training
process [24]. The data sets from one charging station are con-
tingent on EVs dis(charging) behaviours, whereas more data
can be taken from multiple charging systems in order to deliver
accurate charging load projections and avoid overfitting issues.

This study estimates the optimal SoC of the workplace for the
next months, which is based on a daily historical EVs charging
data set using a linear fit analysis to derive the charging pat-
terns. The major difference with existing systems [25] is that
the proposed adaptive control approach does not need informa-
tion on EV driving patterns (departure time and arrival time) to
achieve the optimal IEMS. Thus, to understand the superiority
of the proposed adaptive neuro-fuzzy-based control technique
based on research gap with the existing control strategies [17--
23] is presented. Also, the impact of EVCS on the distributed
grid is higher in conventional control strategies as referred to in
existing literature [26, 27]. The grid operators use classical-based
control techniques in operations rather than the intelligent con-
trol techniques because the classical control techniques have the
capability to utilize the closed-loop systems in terms of open-
loop systems, on the other hand, which are established or easy to
design. Besides, with all features, classical control techniques are
lacking with respect to coordinated control. So, our proposed
coordinated control scheme is superior to classical techniques,
because it minimizes the impacts of EVCS on the distributed
grid. The proposed study provides flexibility for the DG-based
EVs aggregator system and further, it will be beneficial for gen-
erating companies (GENCOs) in planning by forecasting their
daily EV charging demand with respect to local generation activ-
ities. Thus, the motivation of this study is to design and deploy
an intelligent adaptive controller to reduce the adverse impacts
of EVCSs on the local grid and maintains the SoC level of BSS
with effective utilization of PV-based DGs. The following are
the key contributions:

∙ Investigates the supervisory of the proposed adaptive neuro-
fuzzy control strategy for two different case studies (with or
without buffer storage system) under flexible weather con-
ditions to project the cumulative grid electricity response as
per past solar PV generation and the EVs charging load data
accordingly.

∙ The novel contribution of the proposed intelligent coordi-
nated control system is automatically switching to desired
operational modes (GC or SA).

∙ Examines the SoC of a storage system and how it varies with
respect to optimal range based on the historical real-time
weather data under the EVs charging events.

∙ Designs an IEMS for solar-powered EVCS by employing
DG power forecasting with EVs charging demand data for
cumulative electricity management.

∙ Analysis of various EVs dis(charging) operations using
hardware-in-loop (HIL) emulator in order to verify and
control peak power requests from dynamic EVs charging
load.

∙ Operates the system in different scenarios to maintain the
EVCS load based on the effective utilization of battery
storage using the coordinated control scheme.
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AMIR ET AL. 3

TABLE 1 Comparative literature review of different control strategies for research gap

Control strategies Key findings/potential applications

Configuration/

operation mode Research gap Ref.

Grey theory optimization
and neural network
(NN)

Analyzed effects of multiple
environmental factors for PV and
EVs charging load prediction

Uncoordinated control,
GC mode, G2V
operation

Elimination of cumulative errors
for non-linear load sequence

[17]

Fuzzy inference system Grid synchronization technique using
droop control

GC and SA mode Unintentional islanding detection
and classification in distributed
sources

[18]

Discrete-based Markov
decision
control (MDC)

Projected the EVCS load, PV power,
and optimized BSS unit with SoC
range (0.3–1)

G2V GC/SA mode Varying solar
irradiance and local load only for
individual day

[19]

Autoregressive integrated
moving average
(ARIMA)

The energy management approach for
PV electricity forecast to charge the
EVs aggregator

Uncoordinated control,
V2G/G2V
operation

Optimization of power flows
between the PV system, local
grid, and a BSS to decrease the
EVs charging cost

[20]

Mixed integer linear
programming (MILP)

PV power and EVs arrival forecast at
EVCS for total profit maximization

Uncoordinated control,
G2V operation, GC
mode

Profile maximizes without any
optimization technique and
hardware validation

[21]

Stochastic programming A case analyzed for day-ahead price
forecast at a parking lot with 50 EVs

Coordinated control,
V2G operation

Consideration of several possible
EVs dis(charging) patterns

[22]

Deep Neural Networks
(DNN)

Short-term forecast of EVs load
demand

Dynamic control, G2V
operation

Adverse impacts of peak EVs
charging load on distribution grid

[23]

Abbreviation: G2V, grid to vehicle.

∙ Further, validates the intelligent EMS with buffer storage sys-
tem under the peak power demand of EVs dis(charging) load
at different instants of time.

The innovation in this research with respect to the existing
literature is to design IEMS along with the buffer storage con-
trol scheme, which is capable of reducing the peak EVCS load
demand on the main grid. Further, the major innovation in the
optimal transition control strategy is disconnecting the DG sys-
tem from the local grid under different scenarios (grid failure
or off-peak conditions) and reconnecting the DG system again
without the BSS. The proposed strategy overcomes the impacts
due to the non-linearity present in the PV-based DG system and
maintains the flexible EVs charging demand with the regula-
tion of dis(charging) for a BSS. The significance of the proposed
IEMS approach lies in maximizing the PV-based DG for EVs
charging and reducing its impact on the grid, especially during
peak loading scenarios. One of the major challenges is optimal
power flow control between the utility and EV charging load to
design an intelligent energy management scheme (IEMS) frame-
work. It can be significantly overcome by designing an IEMS for
controlling the power flow between the local grid and the EVs
load. However, in our proposed system the power flow control
is bidirectional, that is, both G2V and vehicle-to-grid (V2G).
Also, the advantage of our proposed adaptive controller is to
enhance the real-time charging control in solar-powered EVCS
by V2G ancillary services.

The remaining sections of the research are organized as fol-
lows: Section 2 describes the design of the proposed intelligent
EMS and details the requirements for optimizing an IEMS.
Section 3 discusses the coordinated control strategies and

development of the intelligent controller, while Section 4
presents the digital simulation analysis of different case studies
and its validation using the real-time HIL experimental setup
given in Section 5. To understand the action of the proposed
control approach, the SoC levels of different scenarios are
plotted under possible intermittent PV generation variations.
Further, the novelty of the proposed control approach is sum-
marized in the Result section. In the Results section, the com-
parison of the proposed control approach with the conventional
techniques is discussed. Finally, Section 6 concludes the research
paper.

2 DESIGN AND OPTIMIZATION OF
PROPOSED EMS

In this section, the design and optimization of the proposed
IEMS is presented. For this, the present study demonstrates the
utilization of real-time metrological data and actual EVs charg-
ing load statistics in an optimal EMS. To maximize solar energy
usage, reduce peak power consumption, and sudden spikes on
the distribution grid during EV charging a coordinated control
system is required [28]. On the basis of the extracted weather
real data sets, PV electricity is forecasted as per the actual PV
electricity generated data. More accurate short-term weather
information in PV electricity forecasting models could increase
the accuracy of the demand response estimation [29, 30]. Here,
the design of BSS optimization aims to predict actual EVs load
statistics into the EMS with a buffer storage system in order
to maximize the utilization of PV-based electricity and mini-
mize the fluctuation of the voltage profile on the distribution
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FIGURE 1 Yearly solar insolation data.

grid. By using the ANFIS controller, weather forecasts for EV
charging and generated PV power are used to address
uncertainties associated with EVCS usage including dynamic
dis(charging).

2.1 Meteorological data and PV electricity
forecasting

Accurate forecasting is essential in order to efficiently utilize
and manage solar-based electricity. The PV energy generated is
directly dependent on the amount of incoming solar insolation,
the panel temperature, and the panel V to I characteristics. Also,
there is spatial and temporal variability in solar insolation [31].
During a clear sky, solar insolation on the PV panel is measured
by multiplying the individual day, and hour of that day by the
cosine function of the angle (the angle in between normal to the
Sun’s direction and tilt PV panel). The amount of solar energy
that reaches the solar panel changes according to the state of the
sky. Numerous complex models have been established to eval-
uate the actual PV generation to manage grid power [32]. Here,
the metrological information is gathered from the open-access
WeatherMap website [33].

Figure 1 shows the yearly solar irradiance data in a CSV for-
mat, which is streamed in a plotting tool [34]. Here, the cloud
cover is calculated to forecast the solar insolation for Delhi,
India region [35]. In the case of an EVCS equipped with lim-
ited BSS, accurate solar power forecasting can be beneficial
to control the grid power [36]. The calculation of PV-based
electricity is based on the most common indicator of the per
cent of cloud cover and the state of the sky. In order to sim-
plify the electricity forecasting model, cloud cover is referred
to as a percentage reduction in solar insulation in comparison
with a clear sky. The projected solar electricity generation is
calculated by the addition of measured solar insolation by mul-
tiplying the PV panel area by the solar panel efficiency over
the random time period, which is mathematically expressed in

Equation (1).

EF
PV

= A × 𝜂 ∫ (1 −Cc ) .I (d , t ) dt (1)

In Equation (1), EF
PV

is forecasted PV electricity (Wh∕m2)
on daily basis, A is the PV panel area in m2, 𝜂 is panel efficiency,
Cc is cloud cover, and I (d , t ) is the solar insolation (in W∕m2)
collected by the solar panel on a random day. Here, I (d , t ) is
simulated as a 2D array, which is indexed by a random day of
the year.

2.2 EVs charging load estimation

The optimal performance of PV-powered EVCS with buffered
BSS is controlled by forecasting of charging load. The fore-
casting of EV charging demand is vital for intelligent energy
management. For optimal control of grid power, medium- and
long-term EV charging load estimation schemes have been
demonstrated in [37]. Most approaches utilize statistical meth-
ods, which are based on past data sets including EV charging
load and meteorological data variation with respect to time.
However, the charging rate for EVs may greatly vary and
depends on vehicle driving patterns, charging routine, and other
time-dependent variables such as the day of the week including
the holiday [38]. The conventional EVs load forecasting tech-
niques may not be feasible for projecting the EV dis(charging)
load with respect to the power demand. The charging power of
vehicles cannot be accurately predicted at a specific time, but the
average energy consumption of the number of EVs at a com-
mercial charging station can be predicted based on the charging
routine. Thus, the estimation of EVs dis(charging) and aver-
age energy demand at a particular time can be projected using
historical EVs charge pattern data sets. To modify the existing
forecasts model in the direction of avoiding the requirement of
inaccessible weather data information, a coordinate is designed
that controls the EVs charging load parameters over 3 months’
period from the historical charging dataset. The average EV
charging load demand for a particular instant is forecasted using
the same day of an individual week, which collects past EV
charging load data for the same day of the week as the fore-
cast period. Here, the least-squares approach is used which
includes the linear fit method of past vehicles dis(charging) load
data set to forecast the EV charging demand for a specific
day.

The proposed least-squares approach is employed to fit the
past EVs charging data sets for power consumption demand to
a straight line as a generalized form in Equation (2).

EF
EV

= s.nw + b (2)

Here, EF
EV

is forecasted vehicle charging load in
kWh

day
for the n

number of days. The data point for a random day of an individ-
ual week is represented by an integer nw and b is representing
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AMIR ET AL. 5

the intercept in the fitted model for a week (nw = 0) and s is
representing slope. The values of s and b represent the opti-
mal fit of past EV charging consumption data for each day of a
week over the past 3 months’ data. When evaluating the optimal
fit, n = 7 is set for each day of the upcoming week to deter-
mine the forecasted EV demand at the workplace or charging
station.

2.3 Optimization of battery storage SoC

In this section, the key objective is to optimize the SoC of the
buffer battery storage and eliminate the unregulated charging
under the variation of dynamic EVs charging load. In order to
achieve this, the corresponding control logic associated with EV
charging load variation is calculated using a supervised algo-
rithm. Initially, the input signals to the HIL are sampled and
used with the model-sim programming. As all the operation is
carried out with python simulation aspects and the HIL inter-
face, the graphs are plotted as a time series representation based
on the data accumulated while conducting the experiments.
Hence, all the results are visualized using the simulation tools
only. Most of the vehicle charging at workplaces occurs during
the morning hours and during this time PV power generation is
low. So, BSS must be sufficiently charged to fulfil the estimated
charging load demand during peak hours [39]. Equation (3)
gives the desired SoC at the start of the day.

ΔEF
BSS

= EF
EV

− EF
PV
,(

SoCmax ≥ SoC F
n ≥ SoCmin +

kEF
EV

EBSS

)
(3)

where SoC F
n = SoCmean +

kΔEF
BSS

EBSS

When the battery SoC level is less than the estimated SoC,
then it needs to be maintained the EVs charging demand and
the BSS must be recharged by the distribution grid through-
out the off-peak period. For this reason, the battery storage
SoC at the start of a day needs to be kept at the desired level,
which depends on the variation between the forecasted PV gen-
erated power with respect to the estimated EVs load charging
requirements for an individual day. Thus, SoC F

n is obtained by
Equation (3) at the start of the day. Here, the SoC F

n means fore-
casted desired SoC level at the start of the nth day. This is equal
to the sum of SoCmean (mean SoC level in% at the start of the day
without overnight vehicles charging) and the ratio of kΔEF

BSS
to

the EBSS . Here, ΔEF
BSS

= EF
EV

− EF
PV

is forecasted electricity
of BSS, which shows the deficit electricity and surplus electricity
(+ve means deploying and −ve means charging). EF

BSS
is rep-

resenting the total BSS capacity in kWh. But,K is an account
for the correction factor for losses in BSS and conversion (it
is assumed k > 1). Here, EF

PV
is forecasted PV electricity in

kWh for the next day (referred from Equation (1)) and EF
EV

is forecasted EV charging load demand in kWh for the next day
(referred from Equation (2)). The SoC F

n lies in between SoCmax

(maximum SoC level in%) and the sum of SoCmin (minimum SoC

level in%) with the ratio of kEF
EV

is forecasted vehicle charging

load in
kWh

day
, for the next day (referred from Equation (2)) and

EBSS .

3 COORDINATED CONTROL
STRATEGY

A dynamic control strategy has been designed for utilizing
maximum generated power for reducing monthly peak load
consumption [40]. This dynamic control approach is only lim-
ited to domestic EVs charging load and it is manually controlled
by distribution system operators (DSO). Further, a conventional
transactive-based energy management strategy for PV-based
less number of EVs integrated parking lots GC system has been
demonstrated in [41], and a stand-alone (SA) charging station
integrated with a mini-grid for rural applications depending on
the availability of local electricity has been demonstrated in [42].
Here, the coordinated control system operation is automatically
switched to the desired mode (GC/SA). The EVs are plugged
into the EVCS in the GC mode and BSS is charged by the PV
energy if it is available. In the SA operation mode, the PV power
is utilized to charge the EVs. If more energy is required, it can
be provided by the utility grid or/and by the BSS. Solar power is
stored in the BSS if no EV is plugged in, and surplus solar power
is fed to the local grid (if the BSS is fully charged). The battery
SoC can be brought up to an optimal level by grid power during
off-peak hours (if the BSS charge level is low). Thus, as per the
estimated PV generation and estimation of EV load charging
demand, the desired battery SoC can be evaluated.

In [43], a BSS functioned as an uninterrupted energy supply
system, where the storage remains charged as per the schedule,
which acts as only an emergency backup supply system. The
benefit of operating the proposed system in GC operational
mode is that during the condition of EVs load demand exceeds
the generated capacity of DG system, so the local grid pro-
vides surplus electricity to fulfil the EVs load demand and there
will be power maintained without any interruption. So, the pro-
posed coordinated control strategy has the novelty that it differs
from the previously developed systems based on various control
aspects and response time. In the case of without consideration
of the off-peak time (if the voltage of BSS reaches the lower
limit), the distributed energy resources (DERs) system charges
the BSS to the desired voltage limit from the solar-based power
generation and/or by the distribution grid. Here, the proposed
system is used as an ANFIS controller interface with supervi-
sory control in order to bi-directionally communicate with the
voltage source inverter (VSI) over the MOD/controller area
network bus. From Figure 2, the coordinated system controls
the PV-based DGs power and monitors the BSS status, EVs
charging load, and grid availability/unavailability status in order
to control the active power flow between other power system
components based on the mode of operation [44]. To opti-
mize the storage system, a coordinated control strategy must
require information on SoC status, BSS flexible capacity, and
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FIGURE 2 Coordinated control of battery storage system (BSS) with
optimal state of charge (SoC).

dis(charging) rate with respect to load. The key advantage of
coordinated control for the EVCS owner is through the time
of use with specified electricity rate structures in respective of
peak power limit and tariffs. The utility electricity rate structure
is considered to reduce the electricity cost during dis(charging)
the BSS from/to the utility grid if required under on/off-peak
hours scenarios. The control approach includes forecasting of
solar-based electricity generation and EVs loads demand predic-
tions to optimize IEMS according to the Indian power scenario,
for it the utilizing electricity rate structure data is taken from the
National Renewable Energy Laboratory database [35].

The supervisory control utilizes the variable weather con-
dition data sets from a load-generation prediction website to
estimate the solar generation and forecasts the estimated vehicle
charging load as per the past stored dis(charging) pattern of the
EVCS [33]. According to the operational mode, the generated
DGs power can feed to the EVs charging load, and surplus elec-
tricity is supplied to the utility grid. If disturbances occur, then
the hybrid DGs will be decoupled from the main grid and the
buffer storage system will maintain the additional EVCS load.
To optimize the SoC of BSS in the EVCS during the off-peak
duration, the optimization approach is employed for the esti-
mation of solar generation and EVs charging load is referred
to in Figure 2. Figure 2 highlights the features of a coordinated
system through supervisory control for bidirectional commu-
nication with VSI over MODBUS and the EMS for storage
over CANBUS [45]. The intelligent coordinated controller uses
the past data from the PV panels to estimate the available DG
power and estimates the required EVs charging loads based on
previous charging patterns and weather conditions. To estimate
the possible impact of DG and EVs charging load on the local
grid network, the simulation study has been performed using
a buffer BSS for EVs charging by DG powered (PDG ). The
PDG and EVs charging demand based on the real operating
conditions of the charging pattern under different scenarios are
represented by the flowchart as depicted in Figure 2.

3.1 Power flow and transition control
scheme

The aim of transition control is to obtain fast response in order
to operate the DG system in both GC and SA operation modes.

TABLE 2 Operational modes of the PV-powered EV charging load
equipped with BSS

Mode of

operation Power flow

Further, the simulation study performs for the quick transition
between GC operation mode, which is based on the off-peak
periods scenario and SA operation mode, which is based on the
on-peak periods. Thus, optimal transition control is achieved
by developing a supervised IEMS. In the distribution system,
BSS never feeds energy to the utility grid due to higher charging
load requirements and lower generated power availability. In the
GC operational mode, the grid power (PG ) is not available at
all times [46]. In addition to charging EVs, the distribution sys-
tem supplies non-linear loads that cannot be directly supplied
by the grid [47]. Consequently, the PV will supply energy to
the EV charger (if it is available), while the battery may provide
energy (if needed). The BSS will store the remaining PV energy
if surplus energy is available. By using the buffer BSS, the distri-
bution system can feed reliable as well as constant energy from
intermittent solar PV to satisfy the charging load.

As shown in Table 2, the dis(charging) of BSS during the off-
peak durations depends upon the PV-based DG and the EV
charging load. Here, mode 1 (GC) and mode 2 (SA) illustrate
that the proposed system operates under uninterruptible power
flow mode. The BSS in mode 2 is always fully charged and
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AMIR ET AL. 7

serves as a backup power supply source system. At the lower
limit of BSS voltage, the intelligent coordinated system charges
the BSS to the upper voltage limit with high capacity from
either the solar-based DG power and/or the power grid with-
out taking into account the off-peak durations. An intelligent
controller monitors the status of PV electricity status, BSS sta-
tus, EVs dis(charging) pattern, and local grid status in order to
control the power flow between other system components [48].
The proposed control approach aims to reduce the PG demand,
maximization of distributed generations (DGs), optimal SoC of
BSS, and maintaining the EVS charging load.

As per the availability of PG, the EVCS operates in two modes
(mode 1 is grid-tied and mode 2 is stand-alone). In mode 1, the
EVs charge from DG, BSS, and grid. However, in case of a grid
fault or power outage, the proposed coordinated system will be
isolated from the grid, and it will automatically switch to mode
2. In mode 1, during plugging of the EVs into the charger, if
PDG is available then it is used to control the EVCS. Further,
if more power is needed to charge the EVs, then the remaining
power is fed by the BSS/grid. If there is no plugging of EVs,
then PDG is stored in the BSS and if BSS is fully charged, then
surplus PDG fed into the grid. In case of off-peak hours, if BSS
is insufficiently charged, then PG can be utilized to fulfil the SoC
level of BSS up to the desired level. Once the BSS is charged up
to the desired level even though the desired power cannot be fed
from BSS to the grid, due to the high-level requirements of EVs
charging load. In mode 2, the PG is not available. The proposed
system can feed power to additional critical loads economically
and reliably. If DGs are available, then the DGs will feed power
to the EVs charging load. At this time, if sudden EVs charging
demand increases then that demand will be fulfilled by the BSS.
If surplus power is available, then the remaining PDG is stored
in BSS. Hence, the proposed coordinated system is working as
a constant reliable power source.

In Figure 3, the flowchart of control logic is for both GC
and SA modes of operation. Here, PEVSE is the power of the
EV supply equipment. When PDG < 0, depending upon the
mode of operation of the EVs charging station, that is, GC
(mode 1) or SA (mode 2) operation mode, the charging demand
of the EVs is fulfilled either by the grid or by the buffer bat-
tery storage based on its optimum SoC levels. From Figure 3,
PG is grid power, PDG is the output power of DG, PEV is
the power required by the electric vehicle supply equipment
(EVSE), PBSS is BSS power (where (PBSS > 0) means BSS dis-
charging). Here, PDG (−ve) means: DG charges the BSS. If the
PEVSE > 0 then the supervised control will check for the SoC
requirement either to charge the battery or to reset the battery
power to zero and start checking for the transition. The default
value of the targeted SoC is taken as SoCtar ≥ 0.80, PCMD is the
power command during off-peak hours for charging of BSS
(default value = 0). The SoCtar and PCMD can be controlled by
a supervisory commuter. The PCMD depends on the availabil-
ity of the DG power, the SoC of BSS, the EVs charging load,
and the status of the charging system, type of system operating
modes (either GC or SA). This maintains the power flow (dur-
ing on/off-peak hours) for charging the BSS from the grid using
the proposed IEMS.

3.2 ANFIS control strategy

The ANFIS incorporates the optimal features of artificial neu-
ral network systems (ANNs) with a FIS to realize the power
flow information based on the training dataset. The proposed
FIS guides a rules base, attributes of input/output, member-
ship functions (MFs) of input/output, and decision variables
related to desired single-value output. The ANFIS model is
designed by the FIS whose MFs are customized either through
an algorithm (least-square type or backpropagation) for vari-
able input/output data sets [49, 50]. The architecture of the
proposed ANFIS is depicted in Figure 4.

The ANFIS architecture comprises five distinct layers with
number of inputs as error (e1) and change in error (de1) that
are associated with layer 1. The output of layer 5 is f , which
provides the summation of all incoming signals associated with
the adaptive node. In Figure 4, the adaptive nodes are referred
to by a square and a fixed node is referred to by a circle. All
layers have a distinct function that is suitable for obtaining
input/output data sets. Some layers have a similar number of
nodes, with analogous functions. The adaptive network is usu-
ally trained through a hybrid-based learning algorithm grouping
of least-squares type (hybrid learning algorithm) and backprop-
agation type (gradient-descent (GD) algorithm). Thus, it allows
the FIS to learn by the data set and is intended at correspond-
ing the proposed ANFIS output with the trained data set [51].
To get the desired outputs and the error rates (d∕de) execute
the proposed system for all iterations. Further, the training
dataset is exported to FIS controller for test output response.
The rule base can be formulated by the function of each
layer:

Rule 1: If e1 𝑖𝑠 X1 𝑎𝑛𝑑 de1 𝑖𝑠 Y1, 𝑡ℎ𝑒𝑛

f1 = p1.e1 + q1.de1 + r1 (4)

Rule 2: If e1 X2 de1 Y2, 𝑡ℎ𝑒𝑛

f2 = p2.e1 + q2.de1 + r2 (5)

Rule n: If e1 Xn de1 Yn, 𝑡ℎ𝑒𝑛

fn = pn.e1 + qn.de1 + rn (6)

The crisp inputs to the nodes are e1 and de1. Here, the
X1, Y1, X2, Y2, …, Xi , Yj , are the proposed fuzzy sets, and
output function ( f ) varies with respect to the related weight
function (wn ). The node in the ithposition of the nth layer
is represented by On,i and the role of each node in the sim-
ilar layer is the identical function that can be depicted as
follows:

Layer 1 is an adaptive node, where the input layer and each
node 𝑖 have a node function Equation (7). On,i is the MFs of Xi ,
which specifies the degree of error and accordingly provides the

 17518695, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/gtd2.12772 by C

ochraneA
ustria, W

iley O
nline L

ibrary on [28/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



8 AMIR ET AL.

FIGURE 3 Supervised control flowchart for two modes of operation such as GC (mode 1) and SA (mode 2), respectively. GC, grid-connected; SA, standalone.

value of proposed quantifier (Xi ). In this paper, the Gaussian
bell-shaped input MF is chosen as MFs ≥ 1 as referred to in
Equation (8).

O1,i = 𝜇.Xi (e) , for i = 1, 2, 3, … , n (7)

𝜇.Xi (e) =
1

1 +

[(
x−𝛾i

𝛼i

)2]𝛽i
(8)

Here, 𝛼i and 𝛽i (positive value) varying the curve’s width accord-
ingly, and while 𝛾i represents the centre of the curve, which is
also called as ‘antecedent parameters’.

From Equation (9) in layer-2 the wi denotes the firing
strength of the related rule base, the node function multiplied by
the input signals to get the output response. Each node is fixed,
which is marked by a ‘P ’ within a circle as shown in Figure 4.

wn = O2,i =
[
𝜇.Xi (e) ]×[𝜇.Yi . (de1)] , i = 1, 2, 3, … , n (9)

Layer 3 is almost the same as the previous layer 2, each node
in this layer 3 is also fixed that is marked by a }N′ within a cir-
cle. The normalization of wn with respect to node function is
evaluated by taking the ratio of the related node and the ith
node. Thus, the summation of the overall wn to all rules base
is depicted in Equation (10).

w̄n = O3,i =
wn

w1 + w2
, for i = 1, 2, 3, … , n (10)
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AMIR ET AL. 9

FIGURE 4 Modified architecture of ANFIS for the reduction in grid
power (PG) demand and maximize the PDG for optimizing EVs charging (PEV)
to optimize the SoC of BSS capacity. ANFIS, adaptive neuro-fuzzy interface
system; BSS, battery storage system; EV, electric vehicle.

In layer 4, the ANFIS employs the least-squares technique
to identify the best-suited desired parameters. In layer 4, each
node functions as an adaptive node. Equation (11) refers to
the parameter (pi , qi , and ri ) of linear functions in the Sugeno
type model. Equation (11) is associated with the consequent
parameter’s node.

O4,i = w̄n × fn = w̄n ×
(

p1.e1 + q1.de1 + r1
)

(11)

Layer 5 is having a single or fixed node which provides the
best-suited output response followed by a summation of all
incoming signals (referred to in Equation (12)).

O5,i =
∑

n

(w̄n. fn ) =

∑
n=1(wn. f )∑

n=1(wn )
(12)

The MF parameters of FIS can be adjusted by the GD
method, which is also known as the back-propagation method.
The proposed ANFIS is trained by adaptive control to match
the training dataset with the desired output response. During
the forward pass, the least-squares scheme is employed, once the
desired parameters are obtained then the backward pass initiates
to get desired parameters based on the best-fit dataset. For train-
ing analysis, the adaptive neuro-fuzzy simulation is performed
by data collection and normalization. Further, the remaining
data sets are referred to for testing purposes. Then, to vali-
date the proposed ANFIS model the dataset is classified for
checking the optimal values. During validation, the main con-
cerns are over-fitting during the training and checking of errors
[24]. Preferably, the errors must be reduced during the training
period. If an error is not decreasing, then it signifies over-fitting.
On the other hand, if the error rises in the initial iteration before
the system is trained, then FIS must be re-trained, because these
MFs may not be able to get the optimal selection for modelling
of the remaining dataset. Thus, one must use either other MFs
or increments in the dataset. These errors are evaluated by the

TABLE 3 Proposed parameters for modelling criterion of ANFIS
controller

ANFIS parameters Value

Number of inputs 10

Membership function Gaussian bell-shaped

Number of MFs Varying between 5 and 7

Type of learning algorithm Hybrid

Number of iterations 500–1000

Proposed fuzzy system Sugeno

Output type Linear/constant

Step size Initial size 1.1, decreased to 0.90

Nodes 110

Fuzzy rules 25–49

root mean square error (ERMS ) analysis:

ERMS =

√∑n

t=1

(
V̂t −Vt

)2

n
(13)

In Equation (13), the V̂t are estimated values and Vt are the
desired target values for time (t ), where the number of sam-
ples is n. The design of the proposed ANFIS controller and its
optimal parameters are depicted in Table 3.

To detect the real-time control action of the ANFIS con-
troller in the transition period, a real-time HIL simulation model
is developed. The real-time results of the proposed controller
show the speedy grid conditioning monitoring under 12 ms.

3.3 System configuration

The proposed framework of the coordinated control system is
to be simulated, which is depicted in Figure 5. Two PV sys-
tems with different power ratings are designed to represent
the PV-integrated parking lots and an isolated PV substation.
The combined power output of these plants is fed through a
50-kW bi-directional DC–DC converter unit (these converters
operate with the charging station requirement in the parking lot
along with the BSS) and DC–AC converter unit (this converter
operates the PV systems along with the charging stations and
BSS in the GC mode). The bi-directional functionality helps
in providing grid-feeding opportunities to the PV, EVs, and
BSS. It operates the converter in rectifier mode to feed the EV,
BSS, and local loads during low PV or no PV scenarios. More-
over, the framework adopts the ANFIS-based EMS to achieve
coordinated control between the sources, loads, and grid to
reduce peak loading on the grid.

The proposed grid system is integrated with DGs (a 5-
kW PV subsystem integrated with a parking lot and a 5-kW
isolated solar subsystem), three EVs charger units (3.3, 6.6,
3.3 kW), a 70-kWh BSS size, and a 20-kW load response bi-
directional converter. The proposed subsystem parameters are
shown in Table 4. (ANFIS) controller produces the reference
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10 AMIR ET AL.
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FIGURE 5 A framework of the proposed system with BSS and PV-based
distributed generations for GC/SA mode. PV, photovoltaic.

TABLE 4 Simulation parameters of EV charging station

Subsystem parameters Rating

Distributed generation (DG)
system

A 5 kW solar PV panel integrated with
a parking lot and a 5 kW isolated
solar plant (250–600 VDC )

Multiport bi-directional converter
(DC/DC and DC/AC)

20 kW

Type and number of EVs charger PHEV and three chargers

Charger (rating) 3.3, 6.6, 3.3 kW with different charging
times

BSS capacity 275 − 400
VDC

70
kW (lithium iron

phosphate battery)

Utility grid 415 V

values based on the grid voltage (vg ) and the grid current (ig )
[15]. In the SA/GC mode, the ANFIS controller produces
the reference values internally as per the EV charging load
demand.

Initially, the charging station feeds continuous power with-
out optimization of BSS to receive data on EVs load which is
employed for predicting the EVs charging load. Further, the
optimization of the BSS function is initiated in order to main-
tain the SoC level of BSS (as projected by PV generation and
associated load). During the off-peak hours, (9 pm–7 am), BSS
is re-charged to the fixed optimized value of SoC which is equal
to 0.8. In the simulation, the dataset of PDG , PBSS , SoC , PG , and
EVs load are collected at every minute. The proposed EVCS
is continuously operating either in GC or in SA mode for

maintaining the EVs load level. To validate the ANFIS control
approach, the data collection for system operation is a primary
task.

4 SIMULATION RESULTS AND
SYSTEM OPERATION

To realize the impacts of the DG system and EVs on the
local grid, the solar-powered EVCS is simulated. The simula-
tion study of optimal transition control is presented for scenario
1 (without buffer BSS) and scenario 2 (with buffer BSS) in
order to validate the response of control action of coordinated
DG system in both GC and SA operation modes. Further,
the simulation study identifies effective operation and quick
transition between GC operation mode during the scenario of
off-peak periods and SA operation mode during the on-peak
periods.

4.1 Scenario 1: DG-powered EVCS without
buffer BSS

In this scenario, the energy management of a PV-powered
charging system fulfils the EVs charging demand with effec-
tive utilization of solar irradiance, especially during the daytime
period. In this scenario, there must be a requirement for intel-
ligent EMS, which decreases the local grid peak power demand
for EV dis(charging) load at different instants of time. In a typ-
ical scenario to be simulated, the three onboard EV chargers
having maximum charge rates of 3.3 and 6.6 kW are used for
simulation analysis. Since, if the EVs batteries are approximately
less than half their discharge rate, then the EVs’ owners charge
their EVs batteries. In this simulation, the total EVs charging
load is taken as 13.2 kW (3.3, 6.6, and 3.3 kW) which operates
in the different instants of time, respectively. The BSS capacity
is 70 kWh with their operational SoC within the range of 0.4
to 1.

In Figure 6, the different scenarios of solar-based DG power
(with or without PV output power) have been taken for individ-
ual days to validate the proposed system. The output power of
PV systems throughout the day is characterized by the sin wave
curve from morning 9 am to evening 6 pm with an average peak
power of 6.4 kW for Day 1, 2, 4, 5, and there is no PV power on
Day 3. The input characteristics of the proposed charging sys-
tem are kept with similar considerations as in practical operating
consequences. In this paper, two different cases of battery stor-
age optimization have been simulated for DGs-powered EVs
with backup BSS.

Case 1 is to recharge the BSS instantly to the desired level
within 1 to 2 h after every EV charging cycle. In this simulation,
a fixed target of SoC is 0.8 employed with a charging power of
10 kW.

And another case, that is, Case 2 is employed during the off-
peak hours to optimally charge the BSS. The optimal value of
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AMIR ET AL. 11

FIGURE 6 Input data of PDG and PEV (EVs charging demand).

BSS is computed by DG electricity and EV load prediction.
Here, the EVs charging mainly occurs during off-peak hours
(from midnight till morning at 8 am). For the calculation of
PEV , the recharge energy is divided by the vehicle charging
time. In both cases, the response of PG and the aggregate of
power (exchange between the EVCS and the grid) is designed
for estimating the adverse impact of EVCS on the distribution
grid.

To determine the charging pattern of the proposed site, a lin-
earized fit model of the historical 3 months’ data set is utilized
from the previous EV charging load data set for a similar day of
an individual week [52]. An online DERs estimation dataset is
used to predict the average amount of existing solar electricity
generation based on the amount of cloud cover.

Figure 7 indicates the increasing or growing by accumulation
or successive additions of electricity consumption from the
distributed grid and energy feeding into the distributed grid
for the total period. From Figure 7 the measured PG and
cumulative grid electricity response for DGs-powered EVs
charging stations without BSS is presented in Figure 7a. Here,
the PG response signifies the off-peak hours during the sum-
mer season for shaded areas scenarios. However, the power
exchange between the distribution grid and EVCS is reduced
by a factor of two as referred to in Figure 7b. It is a case
of DG-powered EVCS without BSS, the positive amplitude
(purple colour) indicates the energy consumption from the
grid and the negative dip (green colour) indicates the energy
fed into the grid. The negative value depicts the power supply
into the grid, while the positive value depicts the power supply
from the grid. In most cases in residential places, the charging
of EVs operates in the early morning or night but more solar
PV generation is available in the afternoon session [53]. So,
solar-powered EVs charging may not be efficiently utilized in
a residential place. Thus, this issue can be overcome by the
consideration of a solar-powered charging system in the parking
lot.

FIGURE 7 DG-powered EVCS without BSS. DG, distribution
generation; EVCS, electric vehicle charging stations. (a) Response of PG.
(b) Response of cumulative grid electricity.

4.2 Scenario 2: DG-powered EVCS with
buffer BSS

Further, the typical scenario 2 of a DG-based EVs charging
station with a buffer BSS is simulated in Figure 8. Instanta-
neously recharge the battery SoC up to 0.8 just after all possible
charging events within 2 to 2.5 h. The recharging of BSS
occurs during partial peak duration. In the case of SA opera-
tion mode (PV-powered EVCS without BSS), the incremented
power requirement (which is fed from the grid) will be reduced.
This simulation considers the Indian average power transmis-
sion and distribution losses of 17% to 20% [54]. Hence, the
proposed PV-powered EVCS with a buffer BSS can reduce
the transmission and distribution losses in a significant manner.
In this scenario, the PV-powered EVCS is simulated for opti-
mal SoC of BSS using similar inputs as referred from Figure 6.
Figure 8 demonstrates the outcome of DG-powered EVs charg-
ing stations without BSS. The simulations of proposed EVs
charging are performed under different cases.

In this scenario, the simulation result shows the PV-based EV
charging for the proposed workplace (which includes an isolated
PV plant system). Since the EVs charging happens in the morn-
ing session, so the solar-based DG power may not be directly
utilized for EVCS. The PG and the response of cumulative grid
electricity has been plotted in Figure 8a as well as in Figure 8b,
respectively. Here, the negative value of response shows the
power supply into the distribution grid, as the positive value
indicates the power supply from the distribution grid. Similarly,
the power exchange between the distribution grid and EVCS
is reduced by a factor of two as referred to in Figure 8b. The
response of Figure 8b is represented by the green curve which
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12 AMIR ET AL.

FIGURE 8 Characteristics of EVs charging station with buffer BSS
(recharged after all charging events). (a) Response of PG. (b) Response of
cumulative grid electricity. (c) Response of SoC. (d) Response of PBSS.

signifies the cumulative grid electricity power fed from the
distribution grid. And the purple curve depicts the cumulative
grid electricity supply into the distribution grid. In Figure 8c, an
initial 0.8 SoC and a charging power of 10 kW are employed in
the simulation. In Figure 8d, the purple line signifies the power
flow variation of BSS based on the dis(charging).

The PG is plotted in Figure 9a and analysed the PBSS response
in Figure 9b. In Figure 9c, the red line signifies the optimal
SoC target, which is upgraded at midnight based on the input
dataset. And the cumulative grid electricity response is referred
to in Figure 9d. In the case of EVs charging demand exceeds the

FIGURE 9 DG-powered EVs charging with intelligent energy
management. (a) Response of PG. (b) Response of PBSS. (c) Response of BSS
SoC with respect to optimal SoC. (d) Response of cumulative grid electricity.

generated capacity of PV system, so the distribution grid pro-
vided the surplus electricity to fulfill the EVs charging demand;
thus, power flow operation remains maintained without any
interruption. So, it is concluded that the spikes of peak EVs
load demand power on the distribution grid are significantly
reduced. The purple curve in Figure 9d is the case of DG-
powered EVs charging with intelligent energy management
which provides more electricity to the grid. Practically, the
supervised independent system operator will compare the mea-
sured SoC of BSS with the nominal SoC level to choose whether
recharging of the BSS is required or not, especially during
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AMIR ET AL. 13

FIGURE 10 Experimental verification of intelligent Energy Management
Scheme (EMS) operation.

the off-peak period. Here, the PPeak demand is decreased by
a factor of two, similar to Figure 7b. The BSS recharges the
demanded power by shifting the on-peak duration to the off-
peak duration. As a result, a coordinated controller enhances the
energy management approach. Since, all distribution companies
(DISCOs) should be an employee of transition control in
desired isolated/GC operational mode. Here, the IEMS offered
flexibility for the EVCS fleet aggregator with optimal SoC based
on forecasted local PV generation activities and further it will be
beneficial for the planning of EVs power consumption on daily
basis by local GENCOs. Therefore, the proposed intelligent
EMS will be helpful in less power utilization during peak hour’s
duration. The proposed system further compares the actual SoC
of BSS with the desired SoC in order to choose that recharging
of BSS is required during the off-peak hours.

5 EXPERIMENTAL VALIDATION

The developed coordinated control is experimentally validated
through the hardware setup shown in Figure 10. The PV sub-
system is emulated with a Keysight PV array simulator which
is connected at the DC link of the Semikron 3𝜙 four-leg DC
to DC and further DC to AC converter configuration. The
converter integrates the lead-acid batteries as vehicle charg-
ing loads and BSS in a coordinated system. A general linear
load is connected in the system and all of this configura-
tion is connected to the grid through a point of common
coupling. The control is realized with the Typhoon HIL real-
time simulator, and the coordinated control is implemented by
configuring the HIL software and the Altera cyclone-IV field-
programmable gate array (FPGA). This controller is motivated
for accomplishing three main functions, that is, optimal mon-
itoring, control strategy, and optimization of energy storage.

FIGURE 11 Measured PDG and PEVCS (charging EVs). (a) PV-based PDG
response. (b) EVs load in EVCS.

The switching pulses are generated from the current controller
developed based on the proportional resonant controller in the
typhoon-HIL simulation. This controller operates according to
the voltage levels and current limits in the system and generates
the switching pulses which can be extracted as digital outputs
from typhoon HIL 402. Further, the obtained digital signals
are boosted to operate the VSC. The experimental setup is dis-
playing the switching pulses are fed to the inverter. Further,
the Hardware-HIL integration configuration with simulated
components provides the pulses to the Semikron inverter. To
accommodate the impact of extreme conditions where the fore-
casting algorithms may result in a mismatch of the information,
the ANFIS controller framework can be accommodated with
memory and replay buffer storage. These aspects provide an
opportunity for the real-time monitoring system to store the
scenarios related to the worst scenarios, which can be used fur-
ther while implementing proposed algorithms for power flow
management. The experimental analysis provides a real-time
verification for the operation of the designed control approach
under uncertainties in PV power generation and dynamic load.

The ANFIS controller model examined in this section is uti-
lized to forecast and control the power flow sharing between the
DG system and BSS which is based on the historical EV charg-
ing load data set [55, 56]. The EVCS was controlled for 7 days
with the BSS being recharged throughout the off-peak duration
(if the desired SoC level reaches to a lower value). Figure 11a
demonstrates the measured PDG based on PV-based generation.
The overall EVCS load corresponding to the PDG on daily basis
is referred in Figure 11b.

Figure 12a shows the PG characteristic associated with EVCS
without buffer BSS. In Figure 12b, the PG is evaluated for
charging the EVCS with a buffer BSS based on the measured
value of PDG and EVs load in order to do comparative analysis
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FIGURE 12 Characteristics of PG for the EVs charging station. (a)
Without buffer BSS. (b) With a buffer BSS.

FIGURE 13 Response of PBSS and cumulative grid electricity.

without a buffer BSS. Thus, the overall impact of EVCSs on
the PG utilization with/without BSS for the optimal value of
BSS SoC is clearly evident from Figure 12. From the simulation
results, solar-based DG power cannot be directly utilized for
EVCS with the buffer BSS, which is accountable for reducing
the power during peak hours.

Figure 13 illustrates the cumulative distribution of grid elec-
tricity. In order to show the comparison of EVCS with/without
the buffer BSS, the proposed system includes a buffer BSS for
some instant of time. Hence, the electricity transfer between the
EVCS and the grid was decreased by a factor of two. Here, the
BSS is operated with an EVCS continuously for a period of time
with optimizing the BSS in order to collect the forecasted DG
data sets based on the EVCS load. As a result, Figure 14 depicts
the forecasted PV-based DG power and the actual generated
PV-powered electricity using the proposed IEMS. Figure 13
shows the response of cumulative grid electricity correspond-

FIGURE 14 Prediction of DGs-based PV electricity generation for
individual instant.

FIGURE 15 EVCS load forecasting for individual instant.

FIGURE 16 Targeted SoC of optimal BSS with respect to forecasted
PDG and PEV .

ing to the operation of case (a) EV charging without a BSS unit
and case (b) EV charging with BSS unit, respectively. The total
electricity feed from the local grid during simulation period for
case (a) is 76 kWh and for case (b) is 36 kWh. Similarly, the total
electricity feed to the local grid during simulation period for case
(a) is 103 kWh and for case (b) is 56 kWh. Thus, it can be con-
cluded from Figure 13 that with respect to case (a) (i.e., 103 +
76 = 179 kWh) in case (b) (i.e., 36 + 56 = 92 kWh) the EVCS
peak energy demand and electricity exchange with the local grid
is dropped by a factor of 1.94 (which is approximately equal to
a factor of 2). Thus, it directly decreases the burden of EVCS
load on the local grid. In Figures 14–16, sample data stand for
validation of forecasted data sets on an individual day.
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TABLE 5 Comparative analysis between conventional and proposed coordinated intelligent control scheme

Parameter

Conventional

EVCS control

strategies [26,

27]

Without

buffer

BSS

With

fixed

buffer

BSS [57]

Proposed

coordinated

control

scheme

Grid impact Higher Higher Moderate Lower

IEMS No No Yes Yes

PV and EVs load prediction No No No Yes

In most cases, the PV electricity forecast is 15% to 18%
greater than the actual generated PV power, which is mainly
because of the PV panels’ actual conversion efficiency not being
as high as reported in their datasheet or by the variation in
weather conditions. Due to inaccurate cloud cover information,
the PV electricity forecast on several cloudy days has been much
lower than the actual electricity generated. The ANFIS con-
troller controls the active power flow among the different power
system components and optimizes the BSS as per the forecasted
PV generation and the EVCS load demand.

Figure 15 illustrates the measured charging load of EVs and
the prediction for the EVs charging load on daily basis. The
forecasted EVs charging load nearly displays the actual EV
charging load variations. The desired SoC of BSS was optimized
as per the forecasted PV-based electricity and forecasted EVCS
load. If the SoC is lower than the optimal SoC level, then the
BSS is recharged during off-peak periods. The PV electricity
forecasts, EVCS load forecasts, and the desired SoC of BSS can
be simulated on a daily or weekly basis. In Figure 15, EV charg-
ing load demand started from 210 samples to 327 samples is
represented by a blue line. Correspondingly, the optimal SoC is
calculated, which is represented for individual BSS on a scale of
0 to 1 as shown in Figure 16.

Figure 16 assesses the measured SoC compared to a fixed
target SoC. It shows the forecasted PV and EVs load with opti-
mal SoC for Sunday. Here, the optimal SoC represents the BSS
individually on a scale of 0 to 1 in Figure 16. The forecasted
EVs charging load almost matched the actual loads. Since the
present simulated charging station has only one charger port,
the result of the EVs load demand prediction will be affected by
uncertainty and abnormalities/contingency.

Figure 17 illustrates the results of continuous operation based
on a different sample of any individual day. The EV charg-
ing system was operated for 2800 sample, and the EVs were
charged from the distribution grid. In the 1700th sample the
ANFIS controller took over coordinate control of the EVCS
and in the 1100th sample, the optimal utilization feature of the
BSS was enabled. The EVCS demand load, PDG , and PG are
plotted in Figure 17. The designed forecasted model results
are indicating that intelligent EMS control approximately elim-
inates the peak electricity demands of the EVCS load demand
from the distribution grid. As a result, the peak demand power
has been reduced by a factor of two. In Table 5, the results
of the developed coordinated control approach are compared
with the conventional charging strategies available in the existing
literature.

FIGURE 17 Measured EV charging load, PDG and PG .

From the comparative result of Table 5, it is identified that
the intelligent controller along with the optimized battery SoC
target has almost eliminated the peak electricity demand of the
EVCS on the distribution grid. It is concluded that in our IEMS
a large capacity battery will reduce the impact on the grid but
increase the overall cost of the system. Hence, this research
developed a cost-effective approach to effectively utilize the bat-
tery power and this achieves a more efficient operation. The
EVs charging station with a BSS unit has a significant reduc-
tion in peak power demand when compared with the charging
station without a buffer BSS unit. The transition strategy has
advantages with disconnecting the DG system from the main
distributed grid under off peak or grid failure conditions and
reconnected without the battery storage unit.

6 CONCLUSIONS

In this paper, an IEMS is developed to reduce the grid peak
load and maximize the utilization of forecasted PV power for
EVs charging load. Based on the actual EVCS load data set and
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meteorological data, the coordinated control strategy proves
that the proposed IEMS scheme is feasible to optimize the
BSS. Optimal battery SoC targets were determined by fore-
casting PV generation and estimating the EVs charging loads.
Further, an ANFIS-based intelligent controller was developed
and integrated into level 2 charging stations to execute the coor-
dinated control strategy in order to utilize the BSS (with or
without buffer storage), forecast PV-based DG power, and esti-
mate EVs charging loads using HIL experimental setup. The
proposed study demonstrated that EVs users routinely can use
the intelligent controller integrated with the charging system at
a time. Both simulation results and experimental results show
that vehicle charging demands occur most frequently during the
early morning period (when solar irradiance is not available),
and hence the PV system is not able to supply the EVs charg-
ing demand. Therefore, the grid meets the EVCS demand at
that time using IEMS. However, when the coordinated con-
troller controls the BSS, then EVCS reduced its peak power
demand and its energy exchange between PV generation, dis-
tribution grid, and EV battery storage resulting in the reduction
of peak power demand by a factor of two. As a result, it shifts
the BSS charging power demand from the on-peak period to
the off-peak period which will benefit the owner of the EV
charging station in consuming less energy during peak usage
hours.

Further, the control capabilities of the developed IEMS
can be improved by designing an agent-based online control
scheme. This can be motivated by reducing the peak EVs
extreme/ultra-fast charging demand under sudden disturbances
during peak load and optimize the BSS in a hybrid multigrid
system. Also, the data related to preferred EV charging rate
and time of stay at EVCS can be considered to modify the
control approach. Moreover, V2G ancillary services can be
integrated with the proposed algorithm. Hence, the aspect of
considering V2G and other ancillary services in the grid as
an addon for developing a power flow management approach
can be potential future work. Economical constraints can be
considered in IEMS as the potential future aspects of the
research.
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