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Abstract: In this work, it is demonstrated that straightforward implementations of the well-known
textbook expressions of the off-axis magnetic field of a current loop are numerically unstable in
a large region of interest. Specifically, close to the axis of symmetry and at large distances from
the loop, complete loss of accuracy happens surprisingly fast. The origin of the instability is catas-
trophic numerical cancellation, which cannot be avoided with algebraic transformations. All exact
expressions found in the literature exhibit similar instabilities. We propose a novel exact analytic
expression, based on Bulirsch’s complete elliptic integral, which is numerically stable (15–16 signifi-
cant figures in 64 bit floating point arithmetic) everywhere. Several field approximation methods
(dipole, Taylor expansions, Binomial series) are studied in comparison with respect to accuracy,
numerical stability and computation performance. In addition to its accuracy and global validity, the
proposed method outperforms the classical solution, and even most approximation schemes in terms
of computational efficiency.

Keywords: magnetic field; current loop; analytic solution; numerical stability; computation performance

1. Introduction and Motivation

Analytic expressions for the magnetic field of current and magnetization problems are
widely used in modern science and engineering. They offer much faster field computation
than their numerical counterparts, and the superposition principle often makes up for the
simple geometries for which solutions exist. User friendly, but much slower numerical
alternatives like ANSYS Maxwell [1] or Comsol [2] are often not available due to their sub-
stantial financial costs, and implementations through open-source packages like FEniCS [3],
or NG-Solve [4] are time consuming and require substantial know-how.

In addition, analytic forms enable extreme computation precision up to 12–14 signifi-
cant digits in Double (64 bit) floating point arithmetic when they are properly implemented.
The downside is that the expressions found in the literature are mostly arranged to look as
simple as possible, with little or no thought given to their implementation. A straightfor-
ward transfer to the computer code often results in numerical instabilities close to symmetry
positions and special cases, surface and edge extensions, and at large distances from the
magnetic field sources.

A good example is the classical textbook expression for the radial component of the
B-field of a circular current loop [5],

Bρ =
µ0i0
2π

z
((ρ + ρ0)2 + z2)1/2

[
−K
(
k2)+ ρ2 + ρ2

0 + z2

(ρ− ρ0)2 + z2 E
(
k2)], (1)

with k2 =
4ρ0ρ

(ρ + ρ0)2 + z2 .

The current loop with radius ρ0 lies in the z = 0 plane, with center in the origin of a
cylindrical coordinate system (ρ, ϕ, z), and carries a current i0. The vacuum permeability
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is denoted by µ0, and K and E are the complete elliptic integrals of first and second kind,
respectively, for which fast and stable numerical algorithms exist [6,7] and implementations
are provided by common tools like Mathematica [8], Matlab [9] and Scipy [10].

A straightforward implementation B̂ρ of expression (1) is numerically troublesome
because catastrophic cancellation happens close to the axis, ρ� ρ0, and at large distances
from the loop, ρ2 + z2 � ρ2

0. The magnitude of this phenomenon is easily underestimated.
For example, evaluations of B̂ρ in Double floating point format give only four correct
significant figures when evaluated at not very distant positions r = (0.01ρ0, ϕ, 100ρ0).
The extent of the problem is laid out in Figure 1. There, the first quadrant in ρz-space is
depicted for an arbitrary ϕ. The other quadrants follow from the symmetry of the problem.

Figure 1. (a) Sketch of a current loop and the observed first quadrant. (b) The number of correct
significant figures of a straightforward implementation of the textbook expression for the radial
component of the B-field of a current loop on a log–log scale.

Discussions in the Magpylib [11] forum on Github underline the practical relevance of
the issue. Magpylib is an open-source Python package that combines analytic solutions
of permanent magnets and current problems with a geometric reference frame API. It
enables users to easily compute the magnetic fields of sources at observers with arbitrary
relative position and orientation. In the now outdated version 3.0.5, a numerically unstable,
straightforward implementation is used for the current loop field, together with a special
case for ρ = 0. When an unsuspecting user creates such a current loop object and rotates
it about an observer located on the loop axis, see Figure 2a, the limited precision of the
rotation naturally results in a misalignment between the observer and loop axis by small
values of the order of the machine precision. In the reference frame of the current loop,
the observer is thus moved from the stable special case, ρ = 0, to the numerically unstable
position 0 < ρ � ρ0. The resulting bad computation is shown in Figure 2b for multiple
angles α ranging from 0 to 360 degrees. Complete loss of precision can be observed in
many cases.

Achieving numerical stability is of critical importance. Instabilities like the one de-
scribed in this work are often not visible, but can lead to erroneous computation results that
are difficult to track down. In this paper, we analyze various expressions for the B-field of
a current loop in terms of range of validity, precision, numerical stability and performance.
Eventually, a reader can decide by himself which formulation suits his needs best.

The structure of the manuscript is as follows: In Section 2, the classical textbook
expression is discussed, the origin of the problem is identified, and several expressions
for the B-field are introduced and analyzed in terms of accuracy. In Section 3, all these
expressions are tested in terms of computation performance. In Section 4, all results are
reviewed and discussed. Finally, in Appendix A, various algorithms used in this work
are provided.
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Figure 2. (a) Sketch of typical current loop positioning with the package Magpylib. (b) Demonstrating
the relevance of the numerical instability, which becomes visible when a current loop rotates about
an observer.

2. Numerical Stability
2.1. Fundamentals and Annotation

As this paper is intended mostly for physicists and engineers, we outline a few basic
concepts and annotation details common in numerical analysis, following the textbook
Accuracy and Stability of Numerical Algorithms [12].

Evaluation of an expression in floating point arithmetic is denoted f l(·). A basic
arithmetic operation op ∈ {+,−, ∗, /} satisfies

f l(x op y) = (x op y)(1 + δ), |δ| ≤ u. (2)

Here, u is the machine precision, which is 2−52 ≈ 1.11× 10−16 for the standard 64 bit
Double floating point format, which is also used in this work. In contrast to the textbook,
we use the common notation that bold symbols denote vectors, and also do not distinguish
between accuracy and precision.

Computed quantities wear a hat, i.e., f̂ denotes the computed value of an expression
f . The absolute error of a computed quantity is defined as, Eabs( f̂ ) = | f − f̂ |. In relation to
the function value, it gives the important relative error

Erel( f̂ ) =
| f − f̂ |
| f | . (3)

The intuitive measure of correct significant figures of an evaluation is a flawed concept,
as explained in the textbook, but is used here nonetheless by rounding the relative error.
In most cases, an evaluation of f̂ experiences large relative errors about zero crossings
of the function f , accompanied by a respective loss of significant figures. However, this
is generally not a problem as long as the absolute error is reasonably bounded there,
Eabs( f̂ )� ε.

We speak of numerical stability when the relative error is small, or at zero crossings,
when the absolute error is, respectively, smaller than the mean absolute function value
in the vicinity of the crossing. In Double floating point format, proper implementations
of analytic expressions are expected to give relative errors below 10−10 to 10−12, or in the
vicinity of zero-crossings, absolute errors that are at least 10–12 orders of magnitude smaller
than the mean absolute function value.
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When a vector field g is studied, this is done componentwise with (3), or vectorwise
using the Euclidean norm || · ||,

Erel(ĝ) =
||g − ĝ||
||g|| . (4)

Such a measure can also mitigate the apparent relative error problem about zero-
crossings of individual components.

Rounding happens when an internal operation results in a number that has more
decimal places than is provided by the used floating point arithmetic. For example,
the input a = 8 can be fully represented in Single (32 bit) precision, while the result
of b = a/3 = 2.6666667 is rounded off. Rounding is by itself not a problem, since the error
appears only in the last digit. The relative error according to (3) yields Erel(b̂) = 1.25× 10−8,
which is in the expected range for Single precision with 7–8 significant digits. However, this
rounding error sets the stage for numerical cancellation. Consider that a number c = 2.6666
is subtracted from the previous result. The outcome is d = b− c = 6.67× 10−5 and has
only three significant figures. The resulting relative error increases to Erel(d̂) = 5× 10−4 in
this case. Further computation with this value must be treated with great care. Numeri-
cal cancellation happens when subtracting rounded values of equal size from each other,
and can even lead to a complete loss of precision, i.e., no correct significant figures.

A power series can be assumed to be stable when implementing the sum with falling
order (small terms first). The limit of precision of a series expansion is mostly a result of
the chosen truncation.

In this work, all quantities are evaluated in Python v3.9.9, and making use of the
standard packages Numpy v1.21.5 and Scipy v1.7.3. Many of the used implementations
are reproduced in Appendix A.

2.2. The Classical Solution

The exact analytic expressions for the off-axis magnetic field of a circular current loop
have been known for a long time. They can either be derived by direct integration over
the current density, or by solving a boundary value problem. A few examples included in
classical textbooks show expressions derived in cylindrical coordinates [5] and in spherical
coordinates [13] via the vector potential. A solution via the boundary value problem is
demonstrated in [14]. A detailed summary of analytic expressions for the current loop
field and their derivatives in different coordinate systems is given in [15]. More recent
developments show a computation through the law of Biot–Savart where the result is
expressed in terms of hypergeometric functions [16]. In [17], the field of arc segments is
reviewed and expressed in terms of incomplete elliptic integrals, where the special case of
a complete current loop is shown to yield the classical results.

Two recent works focus on computationally efficient approximation schemes: Prant-
ner et al. [18] use local Taylor series approximations about supporting points. This has the
advantage that the resulting expressions are simple, numerically stable and fast to compute.
On the other hand, the validity is limited to small regions about the supporting points,
and for each new region, a new series must be constructed. A very elegant solution was
proposed by Chapman et al. [19]. They make use of a binomial expansion and reduce the
field to a simple series with a high level of accuracy everywhere. Their work aligns strongly
with this paper, is reproduced in Section 2.6, and analyzed in terms of performance in
Section 3.

Hints towards stability problems of the classical solutions are found in [20], where
the authors use a series expansion to “obtain simpler expressions valid at intermediate
distances”, and in [21], where various analytic representations are derived and studied.
Proper numerical implementation, numerical stability and computation performance are
hardly discussed in the literature beyond basic algorithms for the complete elliptic integrals
and Taylor series expansions.
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All works that offer exact analytic forms for the field of the current loop end up
with the same expressions in cylindrical coordinates, or with expressions that are easily
transformed to the following one

BClassic
ρ = B0

k√
ρ̄

z̄
ρ̄

1
q2

[
(1 + q2)E(k2)− 2q2K(k2)

]
︸ ︷︷ ︸

ξ0(k,q)

, (5a)

BClassic
z = B0

k√
ρ̄

1
q2

[
2q2K(k2)−

(
1 + q2 − k2

ρ̄

)
E(k2)

]
︸ ︷︷ ︸

ξ1(ρ̄,k,q)

(5b)

with k2 =
4ρ̄

z̄2 + (1 + ρ̄)2 , q2 =
z̄2 + (1− ρ̄)2

z̄2 + (1 + ρ̄)2 .

The loop lies in the z = 0 plane of a cylindrical coordinate system (ρ, ϕ, z), with the
origin at its center. Bρ and Bz denote radial and axial component of the B-field, respectively.
Everything is expressed in dimensionless quantities, ρ̄ = ρ/ρ0 and z̄ = z/ρ0 with the loop
radius ρ0, and B0 = µ0i0/8πρ0 with the vacuum permeability µ0. The functions K and E
denote the complete elliptic integrals of first and second kind, respectively, for which fast
and stable algorithms exist [6,10].

The formulation is chosen through the two dimensionless quantities k and q that satisfy

q2 = 1− k2. (6)

While k and q can be expressed through each other, it is important that they are computed
individually to avoid numerical cancellation effects. Specifically, a pure k-formulation results
in additional problems about the singularity at ρ̄ = 1, z̄ = 0, while a pure q-formulation adds
to the main instability described in the next section.

The system is independent of the azimuth angle ϕ, so that the parameter space of
interest, covering all of R3 except the loop itself, is,{

ρ̄ ∈ [0, ∞), z̄ ∈ (−∞, ∞) : ρ̄ 6= 1∨ z̄ 6= 0
}

→ k, q ∈ [0, 1]. (7)

Due to the symmetry, we only study positive values of z̄.

2.3. Numerical Stability of the Classical Solution

By straightforward implementation, we mean naive transfer of a function to the
computer script. A code example for such an implementation B̂Classic of Equation (5) is
provided in Appendix A.1. This implementation is component- and vectorwise numerically
unstable, which can be seen from the relative errors shown in Figure 3. An increasing loss
of precision with distance from the loop (ρ̄2 + z̄2 � 1) can be observed in all subplots.
In addition, the radial component becomes unstable towards the axis (ρ̄� 1). This instabil-
ity translates partially to the vectorwise error in (c), despite the dominating amplitude of
the stable BClassic

z . The troublesome "speckled" region in (c) is the result of the competing
error between the two components. Finally, the relative error diverges naturally in a nar-
row band about the zero crossing of the z-component, outlined with a dotted line in (b).
All error computations in this work are achieved by comparison to stable forms that are
derived below.

The origin of the observed instabilities is numerical cancellation when evaluating the
functions ξ0 and ξ1 in (5). Both functions are made up of two summands that tend to π and
−π, respectively, for k→ 0, which corresponds to regions close to the axis and far from the
loop, as can be seen from Figure 3d.

The cancellation effect is best demonstrated with the function ξ0. Figure 4a shows
a straightforward implementation of ξ0, and an implementation of its Taylor series for
small k including eight terms up to order k18. The fluctuation of ξ̂0 with decreasing k is



Magnetism 2023, 3 16

a result of the numerical cancellation, which ends in a complete loss of accuracy below
k2 ≈ 3.5× 10−8. Loss of precision resulting from the truncation of the Taylor expansion,
as k approaches 1, is made visible in the inset figure.

Figure 3. Relative error of a straightforward implementation of the textbook expressions for the
B-field of a current loop. (a) Radial and (b) axial components, as well as (c) vectorwise analysis reveal
a high level of numerical instability. (d) The relation between the cylindrical coordinates and the
important quantity k.

Figure 4. (a) Two different implementations of the function ξ0 and (b) the relative difference when
comparing them to each other.

Relative errors of the two implementations are shown in Figure 4b. With decreasing
k the straightforward implementation loses precision. Below k2 ≈ 3.5× 10−8 the relative
error exceeds 1 which is understood as a complete loss of precision. On the other hand,
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the accuracy of the Taylor series increases with decreasing k until the truncation error
undercuts the machine precision. For small values of k, this Taylor series can be used as an
excellent numerical reference.

All exact expressions for the magnetic field of a current loop that are provided in the
literature seem to exhibit similar instabilities. This includes the tempting form in spherical
coordinates [13,15]. Rearrangement of the problematic summands can partially reduce
some cancellation effects, but the main problem remains.

2.4. Dipole Approximation

Dipole models are commonly used to describe the magnetic field at large distances
from the sources. They are numerically stable, easy to implement and fast to compute.
Specifically for current loops, dipole models are used when coupling distant coils [22], or in
some geomagnetic works [23,24]. The relation between the magnetic dipole moment and
the current loop parameters is m = (0, 0, i0ρ2

0π). The resulting dipole field in cylindrical
coordinates is given by

BDipole = B0
2π

(ρ̄2 + z̄2)5/2

 3ρ̄z̄
0

2z̄2 − ρ̄2

. (8)

Straightforward implementations of (8) are numerically stable, so that the precision of
the dipole model is limited only by the approximation error. The vectorwise relative error
is shown in Figure 5a. It can be observed that the accuracy of the dipole approximation
increases only slowly with distance from the loop. At ρ̄ = 100, the relative error is still
above 10−4. The large difference between current loop and dipole model is also noted
in [20].

The colorful contour lines in the figure correspond to the vectorwise relative error of
B̂Classic, and are taken from Figure 3c. While the dipole approximation saves the day at
large distances, the figure also reveals that both computations fail to give correct results in
a large region of interest close to the axis.

Figure 5. Vectorwise relative error of the dipole approximation (a) and a Taylor approximation
(b) of the B-field of a current loop. The colored contour lines show the numerical error from a
straightforward implementation of the classical textbook expressions.
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2.5. Taylor Approximation

In Section 2.3, it is explained that the classical textbook expressions suffer from the
numerical instabilities of ξ0(k, q) and ξ1(ρ̄, k, q) for small values of k. A series expansion
seems like a natural choice. Taylor approximations of (5a) and (5b) about k = 0 calculate as

BTaylor-k
ρ = B0

z̄
ρ̄3/2

3π

16q2

[
k5 +

1
4

k7 +
15
128

k9 +O(k11)

]
, (9a)

BTaylor-k
z = B0

1
ρ̄3/2

π

2q2

[
k3 − 2 + 3ρ̄

8
k5 − 3

1 + 3ρ̄

64
k7 +O(k9)

]
. (9b)

The vectorwise error of such a series expansion with up to order k21 (10 terms) is
shown in Figure 5b. Such an expansion with a simple cutoff criterion kc = 0.26 can be
combined with the classical solution (5) to yield at least 10 significant digits everywhere.

Moreover, it is possible to provide a second Taylor series about q = 0, which is accurate
when the k-series fails,

BTaylor-q
ρ = B0

kz̄
ρ̄3/2

[
1
q2 +

3
4

ln
(

eq2

16

)
+

3
64

ln
(

e256
q4

)
q2 +O(q4)

]
, (10a)

BTaylor-q
z = B0

k
ρ̄3/2

[
(1− ρ̄)

1
q2 −

1
4

(
4 + ln

(
eq2

16

)
(1 + 3ρ̄)

)
+O(q2)

]
. (10b)

Here e denotes Euler’s number. It is shown in Figure 6 that it is possible to cover all of
R3 by overlapping a k-series and a q-series. Specifically, two such series that include terms
up to order q60 and k61 with cutoff criterion kc = 0.7 globally undercut a componentwise
relative error of 10−10. The respective kc = 0.7 contour is shown in Figure 6a,b.

Figure 6. Vectorwise relative error of Taylor approximations of the B-field of a current loop. (a) Ex-
pansion for small k. (b) Expansion for small q.

Proper implementations of these series are provided in Appendix A.2, together with
detailed information about the series precision with respect to the chosen truncation.
Computation performance is discussed in Section 3.

2.6. Binomial Expansion

It is proposed in [19] to make use of a binomial expansion to generate the following
series approximation for the B-field of a current loop,
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BBinom
ρ = B0

2πz̄ρ̄

(ρ̄2 + z̄2 + 1)5/2 ∑
i

AiFi, (11a)

BBinom
z = B0

2πρ̄

(ρ̄2 + z̄2 + 1)5/2 ∑
i

(
4

W1/2 Bi − ρ̄Ci

)
Fi. (11b)

The quantity W is closely related to k4,

W =
4ρ̄2

(ρ̄2 + z̄2 + 1)2 , (12)

and the functions Fi and coefficients Ai for the lowest five orders are given by

F0 = 1, A0 = 3,
F1 = W/(1−W), A1 = 3.601265264628424,
F2 = (ln(1−W) + W)/W, A2 = 7.270215646065023× 10−1,
F3 = ln(1−W), A3 = −5.22255035327797× 10−2,
F4 = W, A4 = −8.69531084533186× 10−3,
F5 = W2, A5 = −1.4574683941872× 10−3.

The corresponding coefficients Bi and Ci are

B0 = 1, C0 = 3,
B1 = 9.003162495383443× 10−1, C1 = 3.601264998153377,
B2 = −3.044435633189330× 10−2, C2 = 7.276276696916009× 10−1,
B3 = −2.5946696478408× 10−2, C3 = −5.27599282256922× 10−2,
B4 = −3.9595895609185077× 10−3, C4 = −8.92318142802500× 10−3,
B5 = −7.177536438× 10−4, C5 = −1.5500658123898× 10−3.

Here, we have simply reproduced the results from Chapman et al. in a format that aligns
with this work. Coefficient C3 has a different sign due to a typo in the original publication.

When implementing the above expressions, great care must be taken with the functions
F2 and F3, as they are numerically unstable for small values of W. For this purpose,
special implementations, commonly termed log1p and log1pmx, can be used. The resulting
accuracy is displayed in Figure 7, and confirms the claims made in [19], that more than five
significant digits are achieved everywhere with this approximation.

Figure 7. Vectorwise relative error of the binomial expansion for the B-field of a current loop.
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2.7. An Exact and Stable Representation

Bulirsch’s general complete elliptic integral [25] is defined as

cel(kc, p, c, s) =
∫ π/2

0

c cos2 ϕ + s sin2 ϕ

(cos2 ϕ + p sin2 ϕ)
√

cos2 ϕ + k2
c sin2 ϕ

dϕ. (13)

An efficient algorithm exists for the computation of cel. Its original implementation
by Bulirsch [25] is reviewed in [26] and is reproduced here in Appendix A.3. A slightly
faster, but more verbose implementation by Fukushima can be found in [27]. Algorithm
convergence and performance is discussed in Section 3.

It is pointed out in [28] that sums of complete elliptic integrals can be expressed in
terms of cel,

λK(m) + µE(m) = cel(
√

1−m, 1, λ + µ, λ + µ(1−m)). (14)

This identity enables us to re-express the troublesome functions ξ0 and ξ1 in the
form of

ξ0(k, q) = cel(q, 1, k2,−k2q2), (15)

ξ1(ρ̄, k, q) = cel(q, 1, k2(1− 1/ρ̄),−k2q2(1 + 1/ρ̄)). (16)

Again, we have chosen a favorable argument representation through k and q to avoid
instabilities about the singularity at z̄ = 0 and ρ̄ = 1.

In principle, the transformation from E and K to cel eliminates the numerical can-
cellation problems of ξ0 and ξ1. However, the implementations by Bulirsch and by
Fukushima become themselves numerically unstable for small values of k when evaluating
(15) and (16).

A closer look at the algorithm in Appendix A.3 reveals the problem: At first (line 7–34),
a set of parameters is prepared from the input arguments, thereon (line 35–44) the solution
is computed iteratively. For the input arguments in (15), it happens that line 28 becomes
cc = k2 − k2q2, which exhibits cancellation for k � 1. This problem is easily fixed by
rewriting the expression as cc = k4 in that line. Similar problems, which can be solved by
algebraic transformations in the first part of the algorithm, happen also when computing
ξ1 in (16).

In Appendixes A.4 and A.5, we show modified cel algorithms, termed cel∗(k, q) and
cel∗∗(ρ̄, k, q) for computing ξ0 and ξ1, respectively, that are stable and fast. For improved
performance, the first part of Bulirsch’s original algorithm is shortened down by assigning
all parameters their respective values, and the improvements proposed by Fukushima [27]
are adapted. Comparisons to overlapping Taylor series expansions, introduced in Section 2.5
confirm the global numerical stability of the two algorithms.

As all other terms in (5) are numerically stable, the following expressions will give the
components of the B-field of a current loop with machine precision everywhere,

BStable
ρ = B0

z̄
ρ̄

k
q2√ρ̄

cel∗(k, q), (17a)

BStable
z = B0

k
q2√ρ̄

cel∗∗(ρ̄, k, q). (17b)

2.8. Loss of Precision at Sign Change

The z-component of the B-field exhibits a sign change when passing from small to
large values of ρ̄. In (17b), the sign change is revealed by the following relation:

cel∗∗(ρ̄, k, q) =
k2

ρ̄
E(k2)− cel∗(k, q). (18)
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Both functions E and cel∗ are positive. Towards the coordinate axis, the first term
dominates, while for large values of ρ̄, the second term does. The zero-crossing in-between
corresponds to the change in sign.

The relative error of the z-component naturally diverges around the zero-crossing.
As explained in Section 2.1, we do not speak of numerical instability in this case, however,
a loss of significant digits of the z-component still occurs. How fast the loss of significant
digits occurs depends on the gradient of the field. In this case, a helpful criterion is
found empirically

lost digits ≈ log10 |Bρ/2Bz|, (19)

which corresponds only to a very narrow band about the crossing.

3. Performance

Analytic solutions are mostly used for their computation efficiency, so that the per-
formance of the proposed algorithms is critical. For a performance comparison on equal
footing, all algorithms are implemented for scalar inputs in native Python, and making use
of the standard math package. This means that only sequential execution is considered,
the potential for code vectorization is not analyzed here. Algorithms for the complete
elliptic integrals, that can also be found in the Scipy library, have been reproduced. All
tests were run on CentOS Linux 7.9.2009 operating system on a AMD EPYC 7513 2.6 GHz
CPU architecture with 32 cores.

The performance test is designed as follows: Each B-field expression is evaluated for
input parameters (ρ̄0, z̄0). This is repeated for a set of 200 different points, that all corre-
spond to a similar value of k. The points are equally distributed on the respective k2 contour
lines that are shown in Figure 3d. This procedure is repeated in a loop 1000 times. For each
value of k, every expression is thus evaluated 200,000 times. The order of evaluation is
mixed up by design, to avoid distortions from computation performance spikes resulting
from Python garbage collection and hardware issues. For each k, the computation times of
every tested expression are summed up.

The results of this test are shown in Figure 8a for different values of k2 ∈ [10−12, 1).
Computation times are displayed with respect to the fastest one, which is always the dipole
expression. Most algorithms evaluate the same expression independent of k, and show
similar timings for all inputs. The proposed stable algorithm is of an iterative nature,
and requires less iterations for smaller values of k. The steps from four iterations close to
the loop filament down to zero iterations are clearly visible in the figure. The binomial
approximation exhibits a step at about k2 ≈ 0.2, which results from the special imple-
mentation of log1pmx that was used here. This function is not available in Python math,
and makes use of a 4-term power series for small W.

In Figure 8b, we show the maximal vectorwise relative computation errors of the
different methods. Interestingly, convergence and divergence of most methods can be
observed well as functions of k2. For the dipole approximation only positions with ρ̄ ≥ 1
on the k2 contour lines are included, because it does not converge close to the origin.
The stable solution is not visible in this figure, because it is used as a reference. It has
machine precision everywhere.

The combination of the two figures enables users to choose the scheme that is most suit-
able for their purpose. When only computation time and accuracy are taken as measures,
Figure 8 shows that the proposed method is extremely competitive. The only solutions that
are faster and have similar precision are the Taylor k-series and the dipole approximation,
both with limited validity. However, in many cases users might not require machine preci-
sion, and can be compelled by the simple analytic expressions offered by the approximation
schemes, which also enable effortless computation of the derivatives.
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Figure 8. (a) Computation times of various methods with respect to the fastest one (dipole) as a
function of k2. (b) The respective vectorwise relative errors.

4. Discussion and Conclusions

We have studied straightforward implementations of the textbook expressions for
the B-field of a current loop (5), and have found that these commonly used forms are
numerically troublesome at large distances from the loop and close to the axis. The
computationally fast dipole approximation (8) appears to be an unsatisfactory option, as it
converges very slowly and solves the problem only at large distances. Instead, a well-
chosen Taylor series approximation (9) with a simple cutoff criterion can mitigate the
instability globally. It is also possible to cover all of R3 with two overlapping Taylor
series (9) and (10). However, to achieve good precision, the series must include a high
order, which makes them computationally slow. A recently proposed binomial expansion
(11) offers simple expressions and excellent computation performance. The only downside
is the limited accuracy (more than five significant figures) in the vicinity of the loop. The real
advancement of this paper is a novel, exact, numerically stable representation in terms
of modified Bulirsch cel functions (17). Implementations based thereon offer machine
precision everywhere and much faster computation times than the classical solution.

For achieving numerical stability, series approximations are always an interesting
option. However, there are several arguments that speak for the proposed cel approach: The
approximation error of the series is a result of truncation and cannot improve unless more
terms are included, while the machine precision limit of the proposed cel algorithm depends
only on the chosen floating point arithmetic. This means that a 128 bit implementation
will give twice as many correct significant figures as a 64 bit implementation when using
cel, while the series will not improve. Of course, this comes at the cost of more automatic
iterations. Secondly, most approximations have a limited region of validity which requires
cut-off criteria and treating multiple cases. This is problematic because in addition to
programming complexity, case splitting hinders code vectorization, which can be a serious
performance issue. Moreover, a cel-based implementation can further reduce computation
time by combining the time consuming iterative parts of both field components in a single
vectorized operation.
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The biggest advantage of the approximation schemes is their simple form, which
makes it easy to find analytic expressions for their derivatives. While it is also possible to
determine derivatives of the proposed cel expressions, making them numerically stable
seems quite laborious.

Similar stability problems of analytic forms can be found throughout the literature
when systems of cylindrical symmetry are involved. Specific examples are expressions
found for the axially magnetized cylinder [26], the diametrically magnetized cylinder [29],
and homogeneously magnetized ring segments [30]. It is very likely that the arc solu-
tions [17] also suffer from this problem. A similar treatment should be attempted for the
extremely useful expressions in these works.

Finally, we are happy to announce that the proposed implementation of the magnetic
field of a current loop, based on the cel∗ and cel∗∗ algorithms, was adopted into the open-
access Python package Magpylib version 4.2.0 and is already available to the general public.
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Appendix A. Algorithms

All algorithms in this section are written in Python 3.9. They are presented in a scalar
form for readability.

Appendix A.1. Straightforward Implementation

The following code shows a naive implementation of the classical expressions (5) of
the B-field of a current loop in cylindrical coordinates.

1 import math as m
2 from sc ipy . s p e c i a l import e l l i p e , e l l i p k
3
4 def B ( rho , z ) :
5 """
6 B− f i e l d o f c u r r e n t l o o p in c y l i n d r i c a l c o o r d i n a t e s in u n i t s o f (mT) .
7 """
8 z2 = z * * 2
9 x0 = ( z2 + ( rho +1) * * 2 )

10
11 k2 = 4* rho/x0
12 q2 = ( z2 + ( rho −1) * * 2 ) / x0
13
14 k = m. s q r t ( k2 )
15 E = e l l i p e ( k2 )
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16 K = e l l i p k ( k2 )
17
18 x1 = k/m. s q r t ( rho ) /q2/20
19 x2 = (1+ q2 ) *E − 2* q2 *K
20
21 Br = x1 * z/rho * x2
22 Bz = − x1 * ( x2 − k2/rho *E )
23
24 return ( Br , 0 , Bz )

Appendix A.2. Taylor Series Implementations

The following code is an implementation of the Taylor series expansion (9a) with
orders up to k61.

1 import math as m
2
3 def Br_taylor_k ( rho , z ) :
4 """
5 T a y l o r s e r i e s o f t h e r a d i a l component o f t h e B− f i e l d o f a c u r r e n t l o o p f o r

s m a l l k up t o o r d e r k * * 6 1 .
6 I n p u t s : R a d i a l and a x i a l p o s i t i o n s , rho = rho / rho0 and z = z / rho_0 .
7 Output : B− f i e l d in u n i t s o f m i l l i t e s l a
8 """
9 z2 = z * * 2

10 x0 = ( z2 + ( rho +1) * * 2 )
11 k2 = 4* rho/x0
12 q2 = ( z2 +( rho −1) * * 2 ) /x0
13 k = m. s q r t ( k2 )
14
15 P = (
16 4.348319233471567 e −05 , # k * *61
17 4.660399561232684 e −05 ,
18 5.007331535430794 e −05 ,
19 5.394505893886228 e −05 ,
20 5.828397724486921 e −05 ,
21 6.316839218549437 e −05 , # k * *51
22 6.869375982346906 e −05 ,
23 7.497737506313522 e −05 ,
24 8.216465605330530 e −05 ,
25 9.043764518687763 e −05 ,
26 1.000266678574197 e −04 , # k * *41
27 1.112265650306444 e −04 ,
28 1.244196727442359 e −04 ,
29 1.401089569905765 e −04 ,
30 1.589667810126675 e −04 ,
31 1.819083471102810 e −04 , # k * *31
32 2.102052011052137 e −04 ,
33 2.456659045960062 e −04 ,
34 2.909335350495146 e −04 ,
35 3.499952301347544 e −04 ,
36 4.290963192983367 e −04 , # k * *21
37 5.384738124528147 e −04 ,
38 6.958738499390220 e −04 ,
39 9.343201341838618 e −04 ,
40 1.321260795815562 e −03 ,
41 2.013349784099904 e −03 , # k * *11
42 3.451456772742693 e −03 ,
43 7.363107781851078 e −03 ,
44 2.945243112740431 e −02 , # k * * 5
45 )
46
47 r e s u l t = P [ 0 ]
48 for p in P [ 1 : ] :
49 r e s u l t *= k2
50 r e s u l t += p
51 r e s u l t *= k2 * k2 * k * z/rho * * ( 3 / 2 ) /q2
52



Magnetism 2023, 3 25

53 return r e s u l t

The following code is an implementation of the Taylor series expansion (10a) with
orders up to q60.

1 import math as m
2
3 def Br_taylor_q ( rho , z ) :
4 """
5 T a y l o r s e r i e s o f t h e r a d i a l component o f t h e B− f i e l d o f a c u r r e n t l o o p f o r

s m a l l q up t o o r d e r q * * 6 0 .
6 I n p u t s : R a d i a l and a x i a l p o s i t i o n s , rho = rho / rho0 and z = z / rho_0 .
7 Output : B− f i e l d in u n i t s o f m i l l i t e s l a
8 """
9 z2 = z * * 2

10 x0 = ( z2 + ( rho +1) * * 2 )
11 k2 = 4* rho/x0
12 q2 = ( z2 +( rho −1) * * 2 ) /x0
13 k = m. s q r t ( k2 )
14 log_q2 = m. log ( q2 )
15
16 P = (
17 2.140383169962052 e −08 − 2.157384139784586 e −07 * log_q2 , # q * *60
18 2.448605439302092 e −08 − 2.386401724650211 e −07 * log_q2 ,
19 2.814368061953632 e −08 − 2.649020096262435 e −07 * log_q2 ,
20 3.251058034393473 e −08 − 2.951635428013855 e −07 * log_q2 ,
21 3.775841577054470 e −08 − 3.302162609809064 e −07 * log_q2 ,
22 4.410934326064394 e −08 − 3.710473232630592 e −07 * log_q2 , # q * *50
23 5.185372706900618 e −08 − 4.188984109787034 e −07 * log_q2 ,
24 6.137516212651031 e −08 − 4.753457145857628 e −07 * log_q2 ,
25 7.318631654988898 e −08 − 5.424099936978626 e −07 * log_q2 ,
26 8.798105223936001 e −08 − 6.227100551585218 e −07 * log_q2 ,
27 1.067114704413582 e −07 − 7.196799136541265 e −07 * log_q2 , # q * *40
28 1.307038624714910 e −07 − 8.378809805536608 e −07 * log_q2 ,
29 1.618366787740300 e −07 − 9.834587570977332 e −07 * log_q2 ,
30 2.028196779163440 e −07 − 1.164823878536536 e −06 * log_q2 ,
31 2.576424314628448 e −07 − 1.393689567281251 e −06 * log_q2 ,
32 3.323144988153871 e −07 − 1.686689932371525 e −06 * log_q2 , # q * *30
33 4.361242251684836 e −07 − 2.067972330876966 e −06 * log_q2 ,
34 5.838535308384648 e −07 − 2.573476678424669 e −06 * log_q2 ,
35 7.998285803570591 e −07 − 3.258245255466363 e −06 * log_q2 ,
36 1.125665818448870 e −06 − 4.209410019484494 e −06 * log_q2 ,
37 1.635873678758604 e −06 − 5.570347093453165 e −06 * log_q2 , # q * *20
38 2.471262120850365 e −06 − 7.588088919874281 e −06 * log_q2 ,
39 3.915944146725158 e −06 − 1.071259612217546 e −05 * log_q2 ,
40 6.591535804299384 e −06 − 1.582168042659760 e −05 * log_q2 ,
41 1.200571004791862 e −05 − 2.478361129760742 e −05 * log_q2 ,
42 2.434841408803401 e −05 − 4.205703735351563 e −05 * log_q2 , # q * *10
43 5.769486681760943 e −05 − 8.010864257812500 e −05 * log_q2 ,
44 1.750345560741787 e −04 − 1.831054687500000 e −04 * log_q2 ,
45 8.433137044373718 e −04 − 5.859375000000000 e −04 * log_q2 ,
46 1.534025963549897 e −02 − 4.687500000000000 e −03 * log_q2 ,
47 −6.647207708399180 e −02 + 3.750000000000000 e −02 * log_q2 , # q * * 0
48 5.000000000000000 e −02 ,
49 )
50
51 r e s u l t = P [ 0 ]
52 for p in P [ 1 : ] :
53 r e s u l t *= q2
54 r e s u l t += p
55 r e s u l t *= k * z/rho * * ( 3 / 2 ) /q2
56
57 return r e s u l t

The following code is an implementation of the Taylor series expansion (9b) with
orders up to k61.

1 import math as m
2
3 def Bz_taylor_k ( rho , z ) :
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4 """
5 T a y l o r s e r i e s o f t h e a x i a l component o f t h e B− f i e l d o f a c u r r e n t l o o p f o r

s m a l l k up t o o r d e r k * * 6 1 .
6 I n p u t s : R a d i a l and a x i a l p o s i t i o n s , rho = rho / rho0 and z = z / rho_0 .
7 Output : B− f i e l d in u n i t s o f m i l l i t e s l a
8 """
9 z2 = z * * 2

10 x0 = ( z2 + ( rho +1) * * 2 )
11 k2 = 4* rho/x0
12 q2 = ( z2 +( rho −1) * * 2 ) /x0
13 k = m. s q r t ( k2 )
14
15 P = (
16 4.348319233471567 e −05 * rho + 1.499420425335023 e −05 , # k * *61
17 4.660399561232684 e −05 * rho + 1.608947467568427 e −05 ,
18 5.007331535430794 e −05 * rho + 1.730929419655089 e −05 ,
19 5.394505893886228 e −05 * rho + 1.867328963268310 e −05 ,
20 5.828397724486921 e −05 * rho + 2.020511211155466 e −05 ,
21 6.316839218549437 e −05 * rho + 2.193346950885221 e −05 , # k * *51
22 6.869375982346906 e −05 * rho + 2.389348167772837 e −05 ,
23 7.497737506313522 e −05 * rho + 2.612847918866833 e −05 ,
24 8.216465605330530 e −05 * rho + 2.869241957417010 e −05 ,
25 9.043764518687763 e −05 * rho + 3.165317581540717 e −05 ,
26 1.000266678574197 e −04 * rho + 3.509707644119991 e −05 , # k * *41
27 1.112265650306444 e −04 * rho + 3.913527288115264 e −05 ,
28 1.244196727442359 e −04 * rho + 4.391282567443621 e −05 ,
29 1.401089569905765 e −04 * rho + 4.962192226749586 e −05 ,
30 1.589667810126675 e −04 * rho + 5.652152213783733 e −05 ,
31 1.819083471102810 e −04 * rho + 6.496726682510037 e −05 , # k * *31
32 2.102052011052137 e −04 * rho + 7.545827731982029 e −05 ,
33 2.456659045960062 e −04 * rho + 8.871268777078002 e −05 ,
34 2.909335350495146 e −04 * rho + 1.057940127452780 e −04 ,
35 3.499952301347544 e −04 * rho + 1.283315843827433 e −04 ,
36 4.290963192983367 e −04 * rho + 1.589245627030877 e −04 , # k * *21
37 5.384738124528147 e −04 * rho + 2.019276796698055 e −04 ,
38 6.958738499390220 e −04 * rho + 2.650947999767703 e −04 ,
39 9.343201341838618 e −04 * rho + 3.633467188492796 e −04 ,
40 1.321260795815562 e −03 * rho + 5.285043183262248 e −04 ,
41 2.013349784099904 e −03 * rho + 8.388957433749600 e −04 , # k * *11
42 3.451456772742693 e −03 * rho + 1.533980787885641 e −03 ,
43 7.363107781851078 e −03 * rho + 3.681553890925539 e −03 ,
44 2.945243112740431 e −02 * rho + 1.963495408493621 e −02 ,
45 − 7.853981633974483 e −02 , # k * * 3
46 )
47
48 r e s u l t = P [ 0 ]
49 for p in P [ 1 : ] :
50 r e s u l t *= k2
51 r e s u l t += p
52 r e s u l t *= −k/rho * * ( 3 / 2 ) /q2 * k2
53
54 return r e s u l t

The following code is an implementation of the Taylor series expansion (10b) with
orders up to q60.

1 import math as m
2
3 def Bz_taylor_q ( rho , z ) :
4 """
5 T a y l o r s e r i e s o f t h e a x i a l component o f t h e B− f i e l d o f a c u r r e n t l o o p f o r

s m a l l q up t o o r d e r q * * 6 0 .
6 I n p u t s : R a d i a l and a x i a l p o s i t i o n s , rho = rho / rho0 and z = z / rho_0 .
7 Output : B− f i e l d in u n i t s o f m i l l i t e s l a
8 """
9 z2 = z * * 2

10 x0 = ( z2 + ( rho +1) * * 2 )
11 k2 = 4* rho/x0
12 q2 = ( z2 +( rho −1) * * 2 ) /x0



Magnetism 2023, 3 27

13 k = m. s q r t ( k2 )
14 log_q2 = m. log ( q2 )
15
16 P = (
17 2.140383169962052 e −08 * rho + 5.756366599134164 e −07 , # q * *60
18 2.448605439302092 e −08 * rho + 6.367692247077877 e −07 ,
19 2.814368061953632 e −08 * rho + 7.068759571675434 e −07 ,
20 3.251058034393473 e −08 * rho + 7.876663620944477 e −07 ,
21 3.775841577054470 e −08 * rho + 8.812562039945226 e −07 ,
22 4.410934326064394 e −08 * rho + 9.902847920909337 e −07 , # q * *50
23 5.185372706900618 e −08 * rho + 1.118072627259595 e −06 ,
24 6.137516212651031 e −08 * rho + 1.268835739807469 e −06 ,
25 7.318631654988898 e −08 * rho + 1.447980732716223 e −06 ,
26 8.798105223936001 e −08 * rho + 1.662516406570504 e −06 ,
27 1.067114704413582 e −07 * rho + 1.921636483711170 e −06 , # q * *40
28 1.307038624714910 e −07 * rho + 2.237557829363388 e −06 ,
29 1.618366787740300 e −07 * rho + 2.626747507371085 e −06 ,
30 2.028196779163440 e −07 * rho + 3.111754087360531 e −06 ,
31 2.576424314628448 e −07 * rho + 3.723999925319969 e −06 ,
32 3.323144988153871 e −07 * rho + 4.508141566084171 e −06 , # q * *30
33 4.361242251684836 e −07 * rho + 5.529063837031901 e −06 ,
34 5.838535308384648 e −07 * rho + 6.883443473579986 e −06 ,
35 7.998285803570591 e −07 * rho + 8.719539805210148 e −06 ,
36 1.125665818448870 e −06 * rho + 1.127244058408705 e −05 ,
37 1.635873678758604 e −06 * rho + 1.492981081843003 e −05 , # q * *20
38 2.471262120850365 e −06 * rho + 2.036144759732213 e −05 ,
39 3.915944146725158 e −06 * rho + 2.879192411774280 e −05 ,
40 6.591535804299384 e −06 * rho + 4.262260553943059 e −05 ,
41 1.200571004791862 e −05 * rho + 6.700276866917860 e −05 ,
42 2.434841408803401 e −05 * rho + 1.143628488115506 e −04 , # q * *10
43 5.769486681760943 e −05 * rho + 2.201260551956201 e −04 ,
44 1.750345560741787 e −04 * rho + 5.143424513214410 e −04 ,
45 8.433137044373718 e −04 * rho + 1.748691113312115 e −03 ,
46 1.534025963549897 e −02 * rho + 1.931709939249829 e −02 ,
47 −6.647207708399180 e −02 * rho + 2.784264097200273 e −02 , # q * * 0
48 5.000000000000000 e −02 * rho − 5.000000000000000 e −02 , # q ** −2
49 )
50 Q = (
51 2.157384139784586 e −07 * rho + 8.701449363797829 e −06 , # q * *60
52 2.386401724650211 e −07 * rho + 9.306966726135822 e −06 ,
53 2.649020096262435 e −07 * rho + 9.977975695921838 e −06 ,
54 2.951635428013855 e −07 * rho + 1.072427538845034 e −05 ,
55 3.302162609809064 e −07 * rho + 1.155756913433172 e −05 ,
56 3.710473232630592 e −07 * rho + 1.249192654985633 e −05 , # q * *50
57 4.188984109787034 e −07 * rho + 1.354438195497808 e −05 ,
58 4.753457145857628 e −07 * rho + 1.473571715215865 e −05 ,
59 5.424099936978626 e −07 * rho + 1.609149647970326 e −05 ,
60 6.227100551585218 e −07 * rho + 1.764345156282479 e −05 ,
61 7.196799136541265 e −07 * rho + 1.943135766866142 e −05 , # q * *40
62 8.378809805536608 e −07 * rho + 2.150561183421063 e −05 ,
63 9.834587570977332 e −07 * rho + 2.393082975604484 e −05 ,
64 1.164823878536536 e −06 * rho + 2.679094920634033 e −05 ,
65 1.393689567281251 e −06 * rho + 3.019660729109378 e −05 ,
66 1.686689932371525 e −06 * rho + 3.429602862488768 e −05 , # q * *30
67 2.067972330876966 e −06 * rho + 3.929147428666235 e −05 ,
68 2.573476678424669 e −06 * rho + 4.546475465216915 e −05 ,
69 3.258245255466363 e −06 * rho + 5.321800583928393 e −05 ,
70 4.209410019484494 e −06 * rho + 6.314115029226741 e −05 ,
71 5.570347093453165 e −06 * rho + 7.612807694385992 e −05 , # q * *20
72 7.588088919874281 e −06 * rho + 9.358643001178280 e −05 ,
73 1.071259612217546 e −05 * rho + 1.178385573439300 e −04 ,
74 1.582168042659760 e −05 * rho + 1.529429107904434 e −04 ,
75 2.478361129760742 e −05 * rho + 2.065300941467285 e −04 ,
76 4.205703735351563 e −05 * rho + 2.943992614746094 e −04 , # q * *10
77 8.010864257812500 e −05 * rho + 4.539489746093750 e −04 ,
78 1.831054687500000 e −04 * rho + 7.934570312500000 e −04 ,
79 5.859375000000000 e −04 * rho + 1.757812500000000 e −03 ,
80 4.687500000000000 e −03 * rho + 7.812500000000000 e −03 ,
81 −3.750000000000000 e −02 * rho − 1.250000000000000 e −02 , # q * * 0
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82 0 . ,
83 )
84
85 r e s u l t = P [ 0 ] − Q[ 0 ] * log_q2
86 for p , q in zip ( P [ 1 : ] , Q[ 1 : ] ) :
87 r e s u l t *= q2
88 r e s u l t += p − q * log_q2
89 r e s u l t *= −k/rho * * ( 3 / 2 ) /q2
90
91 return r e s u l t

In most cases, the 30 provided terms will not be necessary. A relation between the
number of terms included and precision of the Taylor series is shown in Table A1. The table
gives values of k below (k-series) or above (q-series) which a series has a precision below
the indicated number of significant figures when the indicated order is included in the
sum. For example, an implementation of Br_taylor_k that includes up to order k21 has at least
8 digits of precision when k ≤ 0.46. An implementation of Br_taylor_q that includes up to
order q40 has at least 10 digits of precision when k ≥ 0.69.

Table A1. Precision of various Taylor implementations in relation to the number of terms included in
the respective sums.

Br_taylor_k (k ≤ value) Br_taylor_q (k ≥ value)

sig.figs k-order included in series sig.figs q-order included in series
21 31 41 51 61 20 30 40 50 60

8 0.46 0.62 0.71 0.77 0.81 8 0.77 0.67 0.60 0.55 0.50
10 0.35 0.53 0.63 0.70 0.75 10 0.85 0.76 0.69 0.63 0.58
12 0.27 0.45 0.56 0.64 0.69 12 0.90 0.82 0.75 0.70 0.65

Bz_taylor_k (k ≤ value) Bz_taylor_q (k ≥ value)

sig.figs k-order included in series sig.figs q-order included in series
21 31 41 51 61 20 30 40 50 60

8 0.43 0.59 0.68 0.74 0.78 8 0.86 0.76 0.70 0.64 0.59
10 0.33 0.50 0.61 0.68 0.73 10 0.91 0.83 0.76 0.71 0.66
12 0.26 0.43 0.54 0.62 0.68 12 0.94 0.87 0.81 0.76 0.72

Appendix A.3. Original Implementation of Bulirsch’s cel Algorithm

The original implementation of Bulirsch’s cel algorithm [25] is reproduced here. This
implementation is also found in the first edition of the popular Numerical Recipes [31] and
is commented on in [26]. Advantages of the algorithm over representations in terms of
Carlson’s functions are discussed in [32]. A slightly faster implementation by Fukushima is
found in [27].

1 import math as m
2
3 def c e l ( kc , p , c , s ) :
4 """
5 B u l i r s c h ’ s c e l a l g o r i t h m t a k e n from Derby2010
6 """
7 i f kc == 0 :
8 r a i s e RuntimeError ( " FAIL " )
9 e r r t o l = 0 .000001

10 k = abs ( kc )
11 pp = p
12 cc = c
13 ss = s
14 em = 1 . 0
15 i f p > 0 :
16 pp = m. s q r t ( p )
17 ss = s / pp
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18 e lse :
19 f = kc * kc
20 q = 1 . 0 − f
21 g = 1 . 0 − pp
22 f = f − pp
23 q = q * ( ss − c * pp )
24 pp = m. s q r t ( f / g )
25 cc = ( c − ss ) / g
26 ss = −q / ( g * g * pp ) + cc * pp
27 f = cc
28 cc = cc + ss / pp
29 g = k / pp
30 ss = 2 * ( ss + f * g )
31 pp = g + pp
32 g = em
33 em = k + em
34 kk = k
35 while abs ( g − k ) > g * e r r t o l :
36 k = 2 * m. s q r t ( kk )
37 kk = k * em
38 f = cc
39 cc = cc + ss / pp
40 g = kk / pp
41 ss = 2 * ( ss + f * g )
42 pp = g + pp
43 g = em
44 em = k + em
45 return (m. pi / 2) * ( ss + cc * em) / (em * (em + pp ) )

Appendix A.4. Implementation of cel∗

Here, we show a modification of Bulirsch’s cel algorithm for computing the function
cel∗, described in Section 2.7. Input arguments are k2 and q2. A vectorized version of this
algorithm is provided by the open-source library Magpylib [11].

1 import math as m
2
3 def c e l x ( k2 , q2 ) :
4 """
5 M o d i f i e d B u l i r s c h c e l a l g o r i t h m f o r computing
6 x i 0 = (1+ q2 ) *E ( k2 ) −2* q2 *K( k2 )
7 = c e l ( q , 1 , k2 , −k2 * q2 )
8 with 0 < k2 < 1 , and q2 = 1−k2
9 """

10 qc = m. s q r t ( q2 )
11 p = 1 + qc
12 g = 1
13 cc = k2 * k2
14 ss = 2 * cc * ( qc / ( qc + 1) )
15 em = p
16 kk = qc
17
18 while m. fabs ( g − qc ) >= g * 1e −8:
19 qc = 2 * m. s q r t ( kk )
20 kk = qc * em
21 f = cc
22 cc = cc + ss / p
23 g = kk / p
24 ss = 2 * ( ss + f * g )
25 p = p + g
26 g = em
27 em = em + qc
28 return 1.5707963267948966 * ( ss + cc * em) / (em * (em + p ) )
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Appendix A.5. Implementation of cel∗∗

Here, we show a modification of Bulirsch’s cel algorithm for computing the function
cel∗∗, described in Section 2.7. Input arguments are ρ̄, k2 and q2. A vectorized version of
this algorithm is provided by the open-source library Magpylib [11].

1 import math as m
2
3 def c e l x x ( rho , k2 , q2 ) :
4 """
5 M o d i f i e d B u l i r s c h c e l a l g o r i t h m f o r computing
6 x i 1 = (1+ q2−k2 / rho ) *E ( k2 ) − 2* q2 *K( k2 )
7 = c e l ( q , 1 , k2 * (1 −1 / rho ) , −k2 * q2 * ( 1 + 1 / rho ) )
8 with 0 < k2 < 1 , and q2 = 1−k2
9 """

10 qc = m. s q r t ( q2 )
11 p = 1 + qc
12 g = 1
13 cc = k2 * ( k2 −( q2 +1)/rho )
14 ss = 2 * k2 * qc * ( k2/(1+ qc ) − ( qc +1)/rho )
15 em = p
16 kk = qc
17
18 while m. fabs ( g − qc ) >= g * 1e −8:
19 qc = 2 * m. s q r t ( kk )
20 kk = qc * em
21 f = cc
22 cc = cc + ss / p
23 g = kk / p
24 ss = 2 * ( ss + f * g )
25 p = p + g
26 g = em
27 em = em + qc
28 return 1.5707963267948966 * ( ss + cc * em) / (em * (em + p ) )
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