
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2022, No. 2, pp. 166–191. DOI:10.46586/tches.v2022.i2.166-191

Side Channel Attack On Stream Ciphers: A
Three-Step Approach To State/Key Recovery

Satyam Kumar1, Vishnu Asutosh Dasu2, Anubhab Baksi3, Santanu Sarkar1,
Dirmanto Jap3, Jakub Breier4,5 and Shivam Bhasin3

1 Department of Mathematics, Indian Institute of Technology Madras, Chennai, India
2 TCS Research and Innovation, Bangalore, India

3 Nanyang Technological University, Singapore
4 Silicon Austria Labs, TU-Graz SAL DES Lab, Graz, Austria

5 Graz University of Technology, Graz, Austria

ma17d002@smail.iitm.ac.in, vishnu.dasu1@tcs.com, anubhab001@e.ntu.edu.sg,
santanu@iitm.ac.in, djap@ntu.edu.sg, jbreier@jbreier.com, sbhasin@ntu.edu.sg

Abstract. Side Channel Attack (SCA) exploits the physical information leakage (such
as electromagnetic emanation) from a device that performs some cryptographic oper-
ation and poses a serious threat in the present IoT era. In the last couple of decades,
there have been a large body of research works dedicated to streamlining/improving
the attacks or suggesting novel countermeasures to thwart those attacks. However,
a closer inspection reveals that a vast majority of published works in the context
of symmetric key cryptography is dedicated to block ciphers (or similar designs).
This leaves the problem for the stream ciphers wide open. There are few works here
and there, but a generic and systematic framework appears to be missing from the
literature. Motivating by this observation, we explore the problem of SCA on stream
ciphers with extensive details. Loosely speaking, our work picks up from the recent
TCHES’21 paper by Sim, Bhasin and Jap. We present a framework by extending the
efficiency of their analysis, bringing it into more practical terms.
In a nutshell, we develop an automated framework that works as a generic tool to
perform SCA on any stream cipher or a similar structure. It combines multiple
automated tools (such as, machine learning, mixed integer linear programming,
satisfiability modulo theory) under one umbrella, and acts as an end-to-end solution
(taking side channel traces and returning the secret key). Our framework efficiently
handles noisy data and works even after the cipher reaches its pseudo-random state.
We demonstrate its efficacy by taking electromagnetic traces from a 32-bit software
platform and performing SCA on a high-profile stream cipher, TRIVIUM, which is
also an ISO standard. We show pragmatic key recovery on TRIVIUM during its
initialization and also after the cipher reaches its pseudo-random state (i.e., producing
key-stream).
Keywords: Stream Cipher · Side Channel Attack · Machine Learning · Mixed Integer
Linear Programming · Satisfiability Modulo Theory · Feedback Shift Register

1 Introduction
Symmetric key cryptography is among the cornerstones in ensuring security in present-
day electronic communication. The symmetric key ciphers are typically highly efficient

We wish to thank François-Xavier Standaert and the anonymous reviewers for their detailed comments
and helpful suggestions.

Licensed under Creative Commons License CC-BY 4.0.
Received: 2021-10-15 Accepted: 2022-12-15 Published: 2022-02-15

https://doi.org/10.46586/tches.v2022.i2.166-191
mailto:ma17d002@smail.iitm.ac.in
mailto:vishnu.dasu1@tcs.com
mailto:anubhab001@e.ntu.edu.sg
mailto:santanu@iitm.ac.in
mailto:djap@ntu.edu.sg and
mailto:jbreier@jbreier.com
mailto:sbhasin@ntu.edu.sg
http://creativecommons.org/licenses/by/4.0/

Satyam Kumar, et al. 167

compared to their asymmetric counterparts. Consequently, symmetric key ciphers are used
whenever the communication protocol allows it.

Therefore, understanding the potential threats that challenge the security of the
symmetric key ciphers is of prime importance. The security of a such a system is usually
challenged on two aspects. The first aspect, termed as classical attack, rigorously analyses
the algorithmic structure. In contrast, the second aspect relies only on the physical
characteristics of a device which is running the cipher. Thus, it bypasses the ingenious
construction that governs the security against the classical attacks. In this work, we
concentrate on one such class of a device dependent attack, known as the Side Channel
Attack (SCA, for short) [KJJ99, Koc96, MOP07, Pee13]. In this case, the attacker , observes
physical characteristics such as timing, power consumption, electromagnetic emanation
and so on. When the secret component of the cipher (typically termed as the key), takes
part in the process, it influences the external characteristics of the device. Equipped with
this knowledge, the attacker is commonly able to deduce some non-trivial information
regarding the key. There is another type of a device dependent attack, the so-called Fault
Attack (FA) [BS97].

Being a major concern for the security, SCAs have garnered serious attention from the
cryptographic community. Still, it appears that the block ciphers (and similar constructions)
get the limelight practically all the time. Effectively, the other main branch of the symmetric
key cryptography that deals with stream ciphers (and similar constructions) is apparently
under-analysed (see Section 2 for a quick review of the existing literature). In this work, we
look for potential solutions to the problem of finding a suitable model for stream ciphers
(and similar constructions), using which an efficient side channel analysis would be possible.
The framework we present here offers multiple features, e.g., it is an automated framework
which can deal with real (noisy) traces for the Hamming weight (software) and Hamming
distance (hardware) leakage model. Additionally, it works even after the cipher reaches its
pseudo-random phase (we also use term key-stream phase interchangeably).

To show the usefulness and non-triviality of our work, we point to the following quotes:
� “Knowledge about the Hamming weight of intermediate values do probably give enough

information to exclude some possible keys and therefore to reduce the key space. However,
Hamming weight information by itself is often not sufficient to derive the secret key.” – [RO04,
Section 1]

� “As there is no obvious way to recover the internal state of the cipher after the initialization
phase when the key is spread amongst the 288 bits of internal state [of TRIVIUM], applying any
kind of side channel attack at a later stage is not promising.” – [GBC+08, Section 4.6]

Our Contribution
The challenge we partake here is to design a generic framework that can retrieve the key
of a stream cipher or a similar construction given the side channel leakage, with minimal
human intervention. Moreover, the framework should be able to retrieve non-trivial
information from the leakage during the pseudo-random generation algorithm, and account
for noise present in the leakage. The source-code is available as an open-source at the
bitbucket repository1. While more information about our modelling is given in Section 3,
the work-flow can be summarised as follows (see Figure 1 for a pictorial description):

1. Offline Stage:

(a) Get the side channel traces from the target device. Using the proper leakage
model, for example Hamming weight for software or Hamming distance from
hardware, those traces can be formulated as a multi-class classification problem.
For instance, the traces can be formulated as a classification problem with

1https://bitbucket.org/anubhab001/trivium-3step-sca/.

https://bitbucket.org/anubhab001/trivium-3step-sca/

168 Side Channel Attack On Stream Ciphers

33 classes when the leakage is from a 32-bit microcontroller since 33 distinct
Hamming weights are possible.

(b) Now the problem can be trained with an appropriate Machine Learning (ML)
model that supports classification.

(c) Test SMT solver for its tolerance limit, tl by using simulated noisy information.

2. Online Stage:
(a) With the trained ML model, we estimate the class in which the target traces

would belong. Thus, we can get some non-trivial information in the form of
Hamming weight or Hamming distance from the traces.

(b) This enables us to fit a Satisfiability Modulo Theory (SMT). If all the predictions
from the ML are correct, then the SMT instance returns a solution for the
unknown state/key in a reasonable time.

(c) Since the probability for correct prediction of HW through the ML model is
not 1, we change the definition of correct prediction. Let c be the original class,
then for a given ε > 0, a prediction c′ of the class is correct if c′ − ε ≤ c ≤ c′ + ε
holds, otherwise the prediction is wrong.

(d) Since the prediction from the ML model (Step 2(a)) is not 100% accurate for
any given ε < 7, once in a while a wrong prediction will make it way through
the SMT instance. This is problematic, since just 1 wrong prediction makes
the entire system inconsistent (even though all the rest predictions are correct).
To filter that, we use another model, which is based on Mixed Integer Linear
Programming (MILP). This MILP instance takes the sequence of predictions
from the ML model, and uses cipher specific information, such as, the Hamming
weight of one block at a certain clock cannot be too dissimilar to that of the
same at the next clock. With a high probability, this MILP instance returns a
sequence with no anomaly.

(e) The output from MILP is finally fed into the SMT instance (Step 2(b)), which
is then solved with error tolerance, tl (Obtained in Step 1(c)).

In actuality, the modellings (ML, MILP and SMT) are more complicated, this comes
from the innate nature of the side channel traces. With the naïve ML modelling, we observe
that the class-prediction accuracy is quite low. This leads to discard of too many traces
(as SMT needs all correct traces), consequently the same experiment is to be repeated an
impractical number of times. To mitigate the problem, we introduce the concept of error
tolerance (denoted by ε) which allows for a middle ground. More information regarding
the concept of tolerance can be found in Section 3.2.

A practical evaluation of our framework is described with the TRIVIUM [DCP08] (de-
scription of TRIVIUM is omitted here due to space constraint) stream cipher running on an
ARM Cortex-M3 board (32-bit microcontroller) in Section 4 (some additional results on 8-
and 16-bit microcontrollers are also shown). In particular, Section 4.2 describes the set-up
used, Section 4.3.1 discusses about the machine learning related results, the MILP model
that corrects the output sequence given by ML is discussed next in Section 4.3.2, following
which the SMT model is described in Section 4.3.3. In Section 4.3.4, we summarise the
SMT module. Thereafter, our experimental results are given in Section 5. Results on the
Hamming weight model (software) are given in Section 5.1 (Section 5.1.1 for pseudo-random
phase and Section 5.1.2 for initialisation phase), and on the Hamming distance (hardware)
model are given in Section 5.2. To test our framework for different SNR, we put results
on success probability of our framework with respect to different SNR using a simulated
traces in Section 6. Lastly, we conclude in Section 7.

Satyam Kumar, et al. 169

2 Related Works
Coming to the side channel attacks on stream ciphers and related constructions, Rechberger
et al. [RO04] present a detailed survey of the attack on stream ciphers and countermeasures
in 2004. Fisher et al. [FGKV07] in 2007 propose a DPA on GRAIN-v1 [HJM07] and TRIVIUM
[CP08]. Their attack is carried out using multiple chosen IVs. Both attacks are done in the
initialisation phase. To remove the noise, they suggest to average out power traces with
identical input parameters. Strobel et al. [Str09] carry out a side channel attack based
on algebraic method on GRAIN and TRIVIUM using multiple IVs in the initialisation phase.
In 2008, a report on susceptibility of eSTREAM candidates is submitted by Gierlichs et
al. [GBC+08]. They show the vulnerabilities of the eSTREAM ciphers against various
SCAs. They suggest an attack on TRIVIUM and GRAIN-v1 during the initialisation only.
Later some SCA on stream cipher is carried out, such as; [HYY+10] on K2; [QGGL13]
on CRYPTO-I (an LFSR-based ciphers); and [KAA+17] on CRYPTO-I, TRIVIUM, GRAIN and
BIVIUM-B. All of these assume noiseless traces and needed multiple IVs for their attack.
In 2015, Chakraborty et al. [CMM15] propose a side channel attack on GRAIN family of
stream ciphers using multiple IVs in the initialisation phase. Tena-Sánchez et al. presents
two papers [TA15, TSA15] in 2015 on TRIVIUM. Both the papers target the initialisation
phase and need at least 1200 different IVs but can deal with noisy traces.

In a recent work by Sim, Bhasin and Jap in TCHES’21 [SJB20] (which we refer to as
DAPA for simplicity), the authors show that for TRIVIUM a partial key recovery (66 out of
80 bits) is possible from the initialisation phase, with the assumption that the obtained
side channel leakage is noise-free.

Indeed, we observe that most of the relevant research works only target the initialisation
phase. To the best of our knowledge, the only existing work to address the attack on the
pseudo-random generation phase is [KAA+17]. This attack, however, is specific to the
CRYPTO-I cipher; and probably does not scale up for mainstream ciphers like TRIVIUM2.
The difficulty of recovering state bits in the pseudo-random phase is that one can no
longer use IV information as it is mixed up completely in the psuedo-random phase. A
comparative summary of the literature survey with our work is shown in Table 1.

Table 1: A comparative study of our work with other stream cipher SCAs
Research Work Year Target Cipher(s) Attack Phase Noisy? # IV?

Fischer et al. [FGKV07] 2007 GRAIN, TRIVIUM Initialisation Noisy Multiple
Gierlichs et al. [GBC+08] 2008 eSTREAM Candidates Initialisation Noisy –
Strobel [Str09] 2009 GRAIN-v1, TRIVIUM Initialisation Noisy Multiple
Qu et al. [QGGL13] 2013 CRYPTO-I Initialisation Noiseless Multiple
Chakraborty et al. [CMM15] 2015 GRAIN Family Initialisation Noisy Multiple
Tena-Sánchez et al. [TA15, TSA15] 2015 TRIVIUM Initialisation Noisy Multiple

Kazmi et al. [KAA+17] 2017 CRYPTO-I Pseudo-random Noiseless Single
TRIVIUM, BIVIUM-B, GRAIN Initialisation Noiseless Single

Jurecek et al. [JBL19] 2019 A5/1 Initialisation Noiseless –
Sim et al. [SJB20] 2020 LR-KEYMILL, TRIVIUM Initialisation Noiseless Multiple

Our Paper 2022 TRIVIUM
Initialisation,
Pseudo-random Noisy Single

In some sense, our work can be associated with Algebraic Side Channel Attack (ASCA).
Some major results related to ASCA on block ciphers can be found in [Jaf07, RS09,
CFGR12, RSV09, ORSW12]. Their method to model HW as a SAT equation (described
in [CFGR12]) will have a large complexity in the case of stream ciphers with more than
billions of clauses because of a larger state size. ASCA uses heuristic approach, solving
the system of equations using the side channel information. However, the method assumes
that the side channel information is decoded and presented perfectly. In a real setting,
the side channel information is noise prone, and the side channel decoding might not

2In the same work, the authors show a side channel attack on TRIVIUM during the initialisation phase.

170 Side Channel Attack On Stream Ciphers

be error-resilient. Several improvements for ASCA have been proposed, to mitigate the
error issue, such as extending the equation to accept set of possible solutions, as shown
in Set-ASCA [RSV09, ZWG+11] and Improved ASCA (IASCA) [MBZ+13], or by using
optimizer to solve imprecise deduction in the equation, as demonstrated by Tolerant ASCA
(TASCA) [OKPW10, ORSW12]. The latest approach is to exploit the soft information
provided by profiled side channel attacks, commonly referred as the Soft-Analysis SCA
(SASCA) [VGS14, GGSB20]. Though powerful, SASCA [BCS21] can be quite demanding
in terms of profiling required. However, as per our knowledge, all these attacks have only
been demonstrated for block ciphers.

3 Attack Methodology
3.1 Brief Overview of the Framework
As noted already in Section 1, our paper presents an automated framework which is able
to recover the unknown state or key bits of a stream cipher (or related constructions) given
the side channel information from a device. Our framework is generic, as it can target
any type of device (software or hardware), can work with a variety of ciphers that follow
the basic Non-linear Feedback Shift Register (NLFSR) based construction (most notably,
stream ciphers), considers the real leakage from a device (i.e., does not use simulated
traces which are noiseless), needs only one execution of the cipher (thereby respecting the
key – IV uniqueness), and can attack initialisation and pseudo-random phases alike. It
involves three solvers (ML, MILP and SMT) that work in conjunction with the rest and
returns the output in a reasonable time.

From a top level view, the overall framework can be conceptually spilt into two steps:
(1) Predict Hamming weight/distance from traces. We need to get a good estimate of

the Hamming weight (HW) on software or Hamming distance (HD) on hardware,
given the leakage information. For simplicity and conciseness, here we focused on
HW model initially. Later on we took a step forward to show that our SMT model
works for Hamming distance model also.

(2) Fit an automated tool to retrieve key. Next, we need to fit the side channel information
obtained to an automated tool which will eventually compute the secret key. If we
are targeting the pseudo-random generation stage of the cipher, the key-stream is
available, and that can be used in the solution process too.

We intuitively choose ML (as it has native support for classification) for Step (1) and
SMT for Step (2). However, the overall method turns out to be considerably more complex
than just that, as described in Section 3.2.

3.2 Description of the Framework
This basic overview of our framework given in Section 3.1 suffers from two major problems.
The relevant discussions, along with the respective remedies, are given next.

3.2.1 Low Accuracy by Machine Learning Model

The first major problem comes from the difficulty of classification of Hamming weight/distance
from the ML instance. This happens due to the relative proximity of one class to the
others. With the naïve implementation, the ML accuracy turns out to be little less than
40% (for more details of our ML model, see Section 4.3.1), despite dedicated efforts to
increase it.

Having such a low accuracy is a problem, as the later part that takes these predictions
and tries to solve for the unknown components, needs to be fed with 100% accurate
predictions. Only one wrong prediction would potentially make the entire SMT system

Satyam Kumar, et al. 171

inconsistent. An initial estimate suggests that we would need a few hundred predictions
for HW/HD for a typical cipher like TRIVIUM [DCP08]. This means, one has to run an
impractical number of independent experiments in order to get all correct predictions from
the ML model.

To find a way to increase the accuracy of the ML model, we make use of the following
interesting observation. We notice that, given the correct class is c, the model will more
likely return a class from {c − ε, . . . , c, . . . , c + ε} than c for ε ≥ 1. In other words, it is
highly likely that the ML model will predict a class within the proximity of the actual
class (than it will predict the actual class). This gives us the idea of tolerance, ε, which
can be interpreted as follows (consider the correct class is c):
(i) When ε = 0, the accuracy of the ML prediction is counted as-is (i.e., we count the

case as accurate if predicted class is c).
(ii) When ε > 0, we count the case where the predicted class belongs from {c −

ε, . . . , c, . . . , c+ ε} as accurate.
Intuitively, with the increase of ε, the corresponding (custom definition of) accuracy

will increase. At the same time, the SMT instances can be tweaked to work with a more
flexible predictions (that contain the tolerance ε). More specifically, any SMT constraint
of the form, x = c′ can be reformulated with ε as, c′ − ε ≤ x ≤ c′ + ε (x can be, for
example, the HW of the state and c′ is the predicted class). Thus, the concept of error
tolerance, ε, allows us to increase accuracy for the ML prediction, and is compatible with
SMT modelling.

Table 2: Trade-off between ML tolerance and SMT solution time (sec.) for TRIVIUM
Tolerance (ε)

0 1 2 3 4
ML Accuracy 0.3933 0.86678 0.98262 0.99784 0.99967

SMT Solving Time 5.42
(110)

254.36
(110)

1819.21
(130)

28755.36
(170)

76797.41
(130)

(·) : Number of TRIVIUM pseudo-random rounds considered

However, a trade-off for tolerance is to be made. Making ε larger will increase the ML
prediction accuracy, but will make the SMT instance less effective. Ultimately, beyond a
certain threshold for a given platform, the SMT solver will take impractical time to solve,
rendering it useless. In our experiment with the ARM Cortex M3, we observe that the
ML model achieves accuracy of 100% starting tolerance ε = 7 (Table 3). For this level
of tolerance, the formulated SMT instances appear to take too much time for our target
cipher TRIVIUM (more results can be found in Section 4). This implies, we need to reduce ε
to get a solution from the SMT problem in a reasonable time, at the expense of reduction
of accuracy for the ML model (unless high performance computing resources are used).
Reducing ε further to 4, we observe that the corresponding SMT instance is solvable in our
set-up, but the solution time is around 13 to 21 hours. Finally, we settle down at ε = 3,
where the ML accuracy is 99.784%, which is quite high, and also the SMT instances can
be solved on an average of 10 hours. This choice of ε appears to hit the sweet-spot for the
conflicting requirements. An instance for the scenario can be seen from Table 2, where the
number in the parenthesis represents the number of rounds3 used for SMT modelling with
TRIVIUM during its pseudo-random phase (key-stream information is used in the solution
process).

3.2.2 No Resilience by SMT Model

If we could use a higher tolerance (e.g., ε ≥ 7 in Section 3.2.1) so that the ML prediction
works with 100% accuracy, then we would be certain that all the information passed to

3With our repeated experiments, the number of rounds shown here appear optimal in terms of solution
time for the respective category.

172 Side Channel Attack On Stream Ciphers

Device Machine Learning Trained ML Model

Simulated
Cipher

Inject noise to the
HW/HD information

Compute the error toler-
ance limit of SMT solver, tl

Trace

(a) Offline

Offline Stage

Predict HW/HD
through ML

Correct HW/HD
by MILP Modelling

Solve SMT
Instance with

error
tolerance, tl

Adopt Recovery
Procedure

Device Recover Secret
State/Key Bits

Unique
Solution

?

Gather More
Information

Trained ML Model

Trace

Predicted
Class

Corrected
Class

Consistent

Yes No

Inconsistent

(b) Online

Figure 1: Schematic of work-flow of our side channel attack framework

the SMT problem is error free. However, as we have seen, increasing the tolerance too
high would also mean the SMT problem is getting less information, that leads to more
solution time for the solver.

Although the choice for ε (which is 3 in our case) allows for a very high accuracy for
the ML model (99.784%), it is not 100%. This means, about 3 in 1000 predictions on
average will be wrong (wrong in this context means, those predictions are outside the
desired tolerance). As mentioned in Section 3.2.1 already, this is a problem since one
wrong prediction would render the whole SMT instance inconsistent. There is no way
for the attacker to know if/when a system is inconsistent until the SMT instance returns
inconsistent, and even after that the attacker does not know which prediction(s) is wrong.
This, in a way, leads us back to the same problem of Section 3.2.1. However, now the
difference is, with the introduction of (non-zero) tolerance, the prediction accuracy for ML
is quite high. This suggests that there could be redundant information so that an error
correction would be feasible.

3.2.3 MILP Model for Correction of Wrong Predictions

As mentioned earlier in Section 3.2.1, a generic MILP model attempts to correct the ML
predicted sequence so that all predictions are within the desired tolerance limit (so that
the final model based on SMT does not return inconsistent4).

Indeed, keeping in mind that the ML model does not take into account the cipher-
specific information (predicts the classes independently), an additional modelling can be
put in place. Here we make use of the following types of information for a b-bit software
platform (b consecutive bits of the state locations are updated at one clock, which are
indicated as block):
(A) Change of HW for entire state from a clock to next. Observe that maximum increase

in HW of the internal state for any consecutive rounds is equal to the number of
incoming bits to the internal state during state update. Similarly, maximum decrease
in the HW of a internal state is equal to the number of outgoing bits. Also, since

4 Inconsistency means the constraints that are fed to the SMT instance are mutually contradictory.

Satyam Kumar, et al. 173

the microcontroller splits the state and runs the blocks consecutively, change in
Hamming weight of each such block from round t to t+ 1 depends upon the number
of incoming and outgoing bits of that block.

(B) Interaction among the blocks.
• If we encounter any block of the type shown in Figure 6(a), then after b rounds
(size of microcontroller used), HW of one block will be transferred to the
next/previous block.
• One bit from previous block is shifted to the next block on the right side. This

forms a conditional constraint, i.e., change in HW of next block depends upon
whether the incoming bit is 1 or 0.

To capture the observations in (A) and (B), we devise a third model. It takes the
sequence of predictions by the ML model, and formulates an MILP problem (described
in Section 4.3.2) which returns (possibly) a slightly modified sequence so that all the
predictions are within the desired tolerance. Finally, the output from this MILP instance
is given to the SMT solver, which solves for the unknown state/key of the cipher (see
Section 3.2.4 for a discussion on this).

This MILP model works as follows. It takes a sequence of predicted classes from ML
as an input and returns a sequence of classes, which is not far apart from the predicted
classes, and which respects the internal cipher structure (noted in (A) and (B)). The catch,
however, is that it may not work all the time, i.e., the returned sequence may fall outside
the desired tolerance limit. Empirically, we observe out of 1000 independent trials that
(here b = 32), the returned sequence of classes lies within the desired tolerance limit in 976
trials5 (see Section 4.3.2 for more details). That means, though the MILP succeeds most
of the time, there is a probability of about 0.024 that the constraints to the SMT problem
will be inconsistent.

3.2.4 Overall Construction of Our Framework

With all the information presented thus far, now we are able to describe a complete
work-flow for our framework, a visualisation of it is given in Figure 1. During the offline
(pre-processing) phase, we prepare the training of our ML model with the side channel
traces. After this, during the online stage (when the actual attack is underway), first this
ML model is queried with the observed sequence of traces and predictions from this model
are noted with a certain predefined tolerance, ε. This predictions are done independently
for each traces, thus it fail to account for the internal structure of the cipher. By capturing
those specifics, we are able to ensure the sequence of predictions fall within the predefined
ε with an MILP modelling (with high probability). This sequence is finally fed to an SMT
solver that gives the solution for the state/key of the cipher.

Recovery Procedure for Inconsistent SMT Instance In the unlikely case that the SMT
instance is inconsistent, we recommend repeating the attack in a combination of the
following ways (recommendation in (β) is probably the most practical):
(α) Retrain the ML model and run the prediction with same traces as input. As the

initial parameters of the ML model are randomised, it may return a different sequence
which could resolve the issue.

(β) While collecting the traces, collect them for additional number of rounds. As shown
in Section 4, we realistically need little over 100 rounds of traces. If, say, the trace is
collected for about 500 rounds, some other part can be potentially targeted if one
part seems not fixable by the MILP model. Since the success probability of MILP is
quite high, we will most likely get success within 1 or 2 trials.

(γ) Collect the traces from the device again6.
5In the process, the MILP model alters the ML predicted sequence at 62% places, on an average.
6If needed, IV can be altered to respect the uniqueness of (key, IV).

174 Side Channel Attack On Stream Ciphers

However, in MILP, increasing the number of classes decreases the success probability and
for SMT the solution time increases after a threshold. Therefore, a lower number of classes
is beneficial for our framework, provided SMT instances are solvable. A similar idea was
also explored in the context of block ciphers in [RSV+11].

Note on State/Key Recovery In our attack on pseudo-random generation phase (where
the cipher is ready to produce key-stream or tag), we are able to recover the (unknown)
state. Depending on the internal structure, (full) key recovery may or may not be possible.
For our exemplary case with TRIVIUM, the state is invertible, thus it can be reverted
back to the key/IV loading phase, finally enabling us to recover the key. In certain cases,
however, the state update is not invertible, in that case (full) key recovery may not be
possible, for example LIZARD [HKM17].

4 Evaluation of Our Framework
4.1 Configuration

1. Cipher: The high-profile stream cipher, TRIVIUM [DCP08], which is chosen as a final
round candidate in the eSTREAM project7, and also is standardized in ISO/IEC
29192-38. Consequently, this cipher has received a large number of analysis, see
[HLM+20, SMB17] for examples. It is chosen by the authors of DAPA [SJB20] as
well. In DAPA, the authors recover 66 (out of 80) bits of the secret key, the rest 14
bits are to be found by exhaustive search. As a direct comparison, we are able to
retrieve the full (80 bits) key of TRIVIUM.

2. Target Device: We take electromagnetic traces from ARM Cortex-M3, a 32-bit
microcontroller (refer to Section 4.2 for more information on the setup). The
corresponding attack for a 16-bit or 8-bit microcontroller are easier, as we show
in Sections 5.1.1 (for key-stream phase) and 5.1.2 (for initialisation phase, this is
typically easier to solve). We also show some results related to hardware leakage in
Section 5.2.

3. Tools: For ML (Section 4.3.1), we use a Multi-layer Perceptron (MLP) due to
its simplicity, with PyTorch9. Gurobi10 solver is used to solve MILP instances
(Section 4.3.2). Finally, as for the SMT solver (Section 4.3.3), we choose Z311.

4.2 Experimental Setup
For the experiments, we implemented the targeted operation in assembly on Arduino DUE
(ARM Cortex-M3) with 512KB flash, 96KB SRAM and 84 MHz operating frequency. We
use Riscure high precision EM probe to capture the leakage, on a Lecroy WaveRunner
610zi oscilloscope. A preliminary test with known fixed data is conducted to identify the
best measurement spot on the board. We first measure the leakage by running grid search
across the target device, and calculate the SNR [MOP07, BDGN13] for each position.
Then, we choose the spot with the best SNR leakage shown in Figure 2 (i.e. SNR ≈ 3.3).
For profiling, we use stratified sampling to ensure all the HW classes are represented in
the experiment. Around 33000 traces are collected with each stratum of HW of 0 to 32
(each HW corresponds to 1000 traces). Overall 2362000 ≈ 221.17 traces are used.

7https://www.ecrypt.eu.org/stream/project.html.
8https://www.iso.org/standard/56426.html.
9https://pytorch.org/.

10https://www.gurobi.com/.
11https://pypi.org/project/z3-solver/.

https://www.ecrypt.eu.org/stream/project.html
https://www.iso.org/standard/56426.html
https://pytorch.org/
https://www.gurobi.com/
https://pypi.org/project/z3-solver/

Satyam Kumar, et al. 175

0 100 200 300 400 500
←− Time samples −→

0.0

0.3

0.6

0.9

1.2

1.5

1.8

2.1

2.4

2.7

3.0

3.3

←
−

SN
R
−→

Figure 2: SNR for the measurement setup

4.3 Hamming Weight (Software) Model
4.3.1 Part I: ML to Predict Classes From Traces

With the experimental set-up described in Section 4.2, here we describe the results related
to machine learning. This is a classification problem with 33 classes (as the number of HW
for the target microcontroller will lie in [0, 32]) based profiled SCA (supervised learning,
in context of ML). This kind of usage of ML in SCA is not uncommon, one may refer
to [PHJ+17] for example. We choose MLP for the classification problem owing to its
simplicity, though other ML models could be used. We collect 1000 traces for each of the
HW classes for profiling. So in total 33000 traces are collected. After that, we collect more
samples for the ML training. The total data-set size (training + validation + testing) for
the ML training, including the traces for profiling, is 2362000 ≈ 221.17. We note that all
classes are represented in the 221.17 samples; but the data-set is imbalanced, i.e., the class
distribution is unequal.

MLP models with input and output layer of size 500 and 33 respectively are trained with
a 62.5/12.5/25 training/validation/testing split and a batch size of 64. All the experiments
are done with Python 3.8.5, PyTorch 1.8.1+cu102 and Numpy 1.20.3 on a server with an
Intel Xeon Platinum 8260 CPU, NVIDIA Quadro GV100 32GB GPU, 256GB RAM and
Ubuntu 20.04.1 LTS as the operating system.

ReLU is used as the activation function after the hidden layers. AdamW [LH17] with
learning rate 0.0001 is used as the optimizer with weighted cross entropy loss as the loss
function to account for class imbalance. During training if overfitting is detected, the
training process is terminated prematurely and the models are discarded. The results from
fully trained models are indicated in Table 3.

We experiment with other activation functions, as well as deeper networks. However,
we observe that the performance in all the other models is comparable to, if not worse,
than the 2 hidden layer model. Moreover, the 2 hidden layer model works efficiently due
to its low depth.

Optuna We also experiment with the automatic hyper-parameter optimisation framework,
Optuna12, to determine the optimal number of hidden layers and hidden layer size (following
[KEI+21, Section 4]). A data-set of size 219.345 with a 80/20 training/validation split is

12https://optuna.org/.

https://optuna.org/

176 Side Channel Attack On Stream Ciphers

used. The number of trials is set to 500 and default settings are kept. At the end of the
optimisation process, Optuna generates a model with 3 hidden layers each of size 416 as
the optimal model with 569121 parameters. This model when retrained on the full data-set
produces results similar to our 2 layer model with 84897 parameters as indicated in Table
3. During the optimisation process, we observe that Optuna would pick the same set of
hyper-parameters multiple times; each time with slightly different validation accuracy,
without pruning the trial. The reported accuracy in the Table 3, for the different data
splits, is the average accuracy of all batches in an epoch rounded to 5 decimal places.

Table 3: Results for machine learning prediction (with varying tolerance)
Train. Val. Testing Accuracy with Tolerance(ε) Train.
Acc. Acc. 0 1 2 3 4 5 6 ≥ 7 Time (s)

MLP-I 0.3601 0.39389 0.3933 0.86678 0.98262 0.99784 0.99967 0.99991 0.99998 1.0 5530.93
MLP-II 0.3661 0.3931 0.39266 0.86615 0.98234 0.99784 0.99965 0.99992 0.99999 1.0 6340.84
MLP-I: (MLP/ReLU) Hidden Layers (128, 128)
MLP-II: (MLP/ReLU) Hidden Layers (416, 416, 416), obtained from Optuna
Data size (training, validation, testing) = (220.494, 218.172, 219.172), Epochs = 100

All in all, we conclude that our model with 2 hidden layers (with 128 neurons per layer)
performs optimally compared to the models returned by Optuna. Also, with this MLP,
the accuracy (when tolerance, ε = 0) that we observe is just shy of 40%.

4.3.2 Part II: Correction of ML Predictions by MILP

As discussed in Section 3.2.3, we need a model that can correct the sequence of ML
predicted classes. MILP appears to be more efficient than SMT for this purpose.

Observe from Table 3, that increasing tolerance improves accuracy but on the other
hand it also increases SMT solution time (check Table 2). In TRIVIUM, the designed SMT
model is able to recover the state bit only if all of input classes are within the error
tolerance 4 in key-stream generation phase, i.e., the predicted HW class should lie in the
range [HWorg − 4,HWorg + 4] (see Tables 5a, 5b and Section 5.1.1), where HWorg refers
to the original HW class. Here, we focus on error tolerance 3 as SMT solution time is less
but 0.216% of HW classes are incorrectly predicted. In order to correct those anomalies,
we have designed an MILP model.

In order to show that our attack is generic, we first describe the MILP model on a
general FSRs based stream cipher under HW model. Without loss of generality, we can
assume the FSRs involved in the cipher are left oriented. As shown in Figure 3(a), assume
the cipher has n registers (Ri, for i ∈ {0, 1, . . . , n− 1}) and their elements are shifted to
their left position during update. The blue arrow represents the incoming and outgoing
bits of each register and black arrow shows that bits are shifted in left direction during
update. Let us divide the internal state into a sequence of consecutive blocks (Bi, for
i ∈ {0, 1, . . . ,m− 1}), each of length same as that of the microcontroller (8/16/32) used,
see Figure 3(b). Dashed black arrow represents that either the last bit of block is shifted
to its immediate left block or it is discarded.

R0 R1 · · · · · · Rn−1←− ←− ←−
(a) General structure of a stream cipher based on FSRs

B0 B1 B2 · · · · · · Bm−2 Bm−1

(b) Consecutive blocks of internal states

Figure 3: Internal state and its block representation

Satyam Kumar, et al. 177

The main idea of MILP modelling is to exploit the dependency relation of blocks shown
in Figure 3(b) and keep track of incoming and outgoing bits. Using these relations we
will search for a sequence of HWs which follows these relations and near to the predicted
HWs sequence. Therefore the optimization function would be to minimise the distance
of HWs sequence variables from predicted HWs sequence. It is to be noted that these
relations have not been exploited by either ML or SMT. Now the algorithm to generate
the constraints and objective function for the MILP instance from the block dependency
relation is as follows.

Objective Function: Minimise the distance between sequence of HWs variables and
sequence of predicted HWs.

Constraint I: Since there are n registers involved (see Figure 3(a)), the number of
incoming bits for the internal state is equal to the number of outgoing bits (blue arrows),
which is equal to the number of registers involved, i.e., n. It implies that the maximum
change in HW of internal state for consecutive rounds is less than n.

Constraint II: For block Bi (0 ≤ i ≤ m − 1), assume that the number of incoming bit
is ini and the number of outgoing bit is outi. Then the HW for block Bi after update
either increases by at most ini or decreases by at most outi. See Figure 4, the blue line
represents the incoming/outgoing bits from the register update function and black line
represents the incoming/outgoing bits from its immediate left or right block.

Bi

· · ·

Figure 4: Representation of a single block

Constraint III: Here we explore the dependency relation for a pair of blocks of the type
(a), see Figure 5(a), whereas we will discard the pairs of type (b), see Figure 5(b). Note in
case (a) number of blue line could be zero. For the accepted pair of blocks we have the
following two cases:

Case 1: Pair of the type as shown in Figure 6(a), where dashed arrow on block Bi
shows either the last bit is fed to the block Bi−1 (black) or being discarded (blue). Similarly
for block Bi+1 either the incoming bit at last position is coming from register update
function or from the block Bi+2. In this case we can observe that the HW of the block
Bi+1 at round t will become the HW of the block Bi at t+mclen round, where mclen is
the length of microcontroller/block.

Case 2: Pair of the type shown in Figure 6(b). Let ini (ini+1) represents the number
of incoming bits to the block Bi (Bi+1) respectively. Similarly, let outi (outi+1) represents
the number of outgoing bits from the block Bi (Bi+1).

Now observe that if the HW of the block Bi+1 increases by ini+1 (i.e., maximum
increase) in the next round, then it implies that all outgoing bits are 0, which in turn
implies that one of the incoming bits to the block Bi is 0 (see black arrow between Bi+1
and Bi). It means that HW of the Bi can increase by at most ini − 1 for that consecutive
rounds. Similarly, if the HW of the block Bi+1 decreases by outi+1 (i.e., maximum decrease)
in the next round, then all outgoing bits from Bi+1 are 1, which implies that one of the
incoming bit to the block Bi is 1. Thus the HW of the block Bi can decrease by at most
outi − 1 in the next round.

As per the construction, sequence of original HW classes will satisfy constraints I, II
and III. Through the MILP modelling we are trying to search for a sequence of classes

178 Side Channel Attack On Stream Ciphers

which satisfies the above dependency relations, and are close to the sequence of predicted
classes. So if there are few wrongly predicted classes, it will return a sequence which is
more close to original class (because of Constraints I, II and III). Thereby we can formulate
this as a minimisation problem. The MILP instance for the above is as given next.

Bi Bi+1

· · · · · ·

(a) Accepted pair

Bi Bi+1

· · · · · ·

(b) Rejected pair

Figure 5: Types of block pair

Bi Bi+1

(a) To another block

Bi Bi+1

· · ·· · ·

(b) Affecting its previous
block

Figure 6: Transfer of bits in a block

The following notations are used subsequently. Let N be the number of rounds, then
for 0 ≤ i ≤ N − 1 and 0 ≤ j ≤ m− 1:

1. n is the number of registers in the stream cipher,
2. mclen is the size of microcontroller used,
3. HWvar[i, j] = MILP variable for HW of block j at round i,
4. HWp[i, j] = predicted HW of block j at round i,
5. HWorg[i, j] = Original HW of block j at round i,
6. inj represents the number of incoming bits to Block Bj ,
7. outj represents the number of outgoing bits from Block Bj .

Let D1 = {0, . . . , N − 1} and D2 = {0, . . . ,m− 1}. Then the mathematical representation
of aforesaid MILP model is described subsequently.

Objective Function: Minimise
∑
i∈D1,j∈D2

|HWvar[i, j]−HWp[i, j] |

Type of Constraints: For i ∈ D1 \ (N − 1) and j ∈ D2, do the following.
Constraint I:

∣∣∣(∑j∈D2
(HWvar[i, j]−HWvar[i+ 1, j])

)∣∣∣ ≤ n

Constraint II: −outj ≤ HWvar[i+ 1, j]−HWvar[i, j] ≤ inj
Constraint III: For j ∈ D2 \ {0}, such that the pair of blocks (Bj−1, Bj) is in the

accepted pair category (see Figure 5(a)):
• Case 1: If the pair (Bj−1, Bj) is of the type as shown in Figure 6(a), then, HWvar[i+
mclen, j − 1] = HWvar[i, j]

• Case 2: (HWvar[i+1, j]−HWvar[i, j]) = inj =⇒ (HWvar[i+1, j−1]−HWvar[i, j−
1]) ≤ inj−1 − 1 and (HWvar[i+ 1, j]−HWvar[i, j]) = −outj =⇒ (HWvar[i+ 1, j −
1]−HWvar[i, j − 1]) ≥ −(outj−1 − 1)

In this system of MILP constraints, Constraint III comprises constraints of the form
Condition 1 =⇒ Condition 2. We can not model this implication relation in Gurobi
directly. However, we can model this by converting it to the indicator constraint13,
which is of the form (z = n) =⇒ Condition; for n ∈ {0, 1}. Therefore the above
conditional statement can be converted into a set of indicator constraints as follows:
(z = 1) =⇒ Condition 2; (z = 0) =⇒ ¬ (Condition 1) where ¬ denotes negation and z
is a dummy binary variable.

Coming back to TRIVIUM MILP modelling, first note that TRIVIUM consists of right
shift registers whereas the above mentioned model is on left shift register. Constraint I
and II will remain same for both left and right FSRs based cipher, whereas in Constraint
III, j − 1 will be replaced by j + 1. Since TRIVIUM comprises of 3 registers, we can replace
n by 3 in Constraint I. For Constraint II, observe from Figure 7 that for any block, the
number of incoming bits is same as the number of outgoing bits i.e., inj = outj , 0 ≤ j ≤ 8.
Therefore, inj = 1 = outj ∀ j ∈ {0, 1, 3, 4, 6, 7, 8}, whereas inj = 2 = outj ∀j ∈ {2, 5}.

13https://www.gurobi.com/documentation/9.1/refman/py_model_agc_indicator.html.

https://www.gurobi.com/documentation/9.1/refman/py_model_agc_indicator.html

Satyam Kumar, et al. 179

0 31

B0

32 63

B1

64 92 93 95

B2

96 127

B3

128 159

B4

160176177191

B5

192223

B6

224255

B7

256287

B8

Figure 7: State registers of TRIVIUM (split into blocks of 32 bits)

Thus we can form Constraint II. In TRIVIUM, all consecutive pair of blocks comes under
the category of accepted pair block (see Figure 5(a)). Therefore, Case 2 of Constraint
III holds for all consecutive pair of blocks. For Case 1 of Constraint III, the block pairs
(B0, B1), (B3, B4), (B6, B7) and (B7, B8) are the right candidates.

In Table 4, we note down the results as follows. We conducted experiments on a
simulated cipher, where the noises are injected in the same distribution as that of ML
output (MLP-II in Table 3). We collect 1000 such random samples, where each sample is
a sequence of noisy HW classes, where the noises follow the MLP-II distribution. Then
we feed it to the MILP solver. To test its success probability, we note down how many
experiments successfully corrected all of the predicted classes with tolerance 3. The
percentage of this with respect to the total number of experiments is indicated in the third
column.

As can be seen from Table 4, solution for Constraint I + II + III can be obtained
in a matter of seconds. We can deduce from the table that success rate varies with the
number of rounds. The best success rate is attained at round 110, i.e., 97.6. This means,
out of 1000 independent experiments (where input to each experiment is a sequence of
110×9 = 990 classes), the model successfully corrects the input sequence in 976 experiments
approximately. Suppose, we will repeat the same experiment independently for n times,
then the probability that we will succeed at least once is, 1− (1− 0.976)n ≈ 0.999424 (for
n = 2), with trace information for 110 rounds. Thus we can conclude that we can correct
sequence of predicted HW classes in 1 or 2 trial(s) with a very high probability, when
traces information for 110 rounds are available.

All of the computations reported here are done on the MILP solver Gurobi-9.1.2
with Python-3.8.12, on an Intel Xeon E5-2670 v3 @ 2.30GHz CPU, running on a 64-bit
Ubuntu-20.04 operating system. It is to be noted that with increase in the number of
rounds, the solution time taken by Gurobi also increases. So if we needed to correct classes
for higher number of rounds and solution time becomes high, then we can drop one or
two constraints to reduce the solution time. Success probability might differ as per the
types of constraints. Also Gurobi’s performance varies with the system configuration and
number of threads. In our experiment increasing the number of threads also increases
solution time as well as memory, so we carried out our experiment using one thread.

Table 4: Success rate of MILP model for TRIVIUM
Constraint

Type #Rounds SuccessRate
Solution Time

Mean (sec.) S.D. (sec.)

I + II + III

110 97.6 3.36 1.37
130 95.9 4.84 0.98
150 96.8 6.38 0.77
170 94.6 7.86 1.18
180 94.3 8.61 1.01
200 93.3 10.53 0.83
300 91.9 22.99 0.70

Tolerance = 3; Number of Threads used = 1

180 Side Channel Attack On Stream Ciphers

4.3.3 Part III: SMT to Solve for Unknown State/Key

Up to this point, we presume that the attacker has side channel traces in possession,
obtains ML predicted sequence of classes (see Section 4.3.1). Then the attacker uses
the MILP model to correct the sequence of predicted classes (refer to Section 4.3.2).
Since the leakage data obtained is erroneous and it is not clear how to model arithmetic
addition (for HW/HD equation), logical operation (for key-stream and state update
function) and erroneous data in SAT simultaneously in a single system of equations. So
we tried to convert the whole system of equations into a system of modular equations
as modular operation is well supported through the data structure BitVec14 in the SMT
solver Z3. Instead of forming direct large degree equations, which is difficult to form
and simplify, we form more smaller degree equations with the help of dummy variables,
which work as follows: equate the dummy variable with the register update function and
update the internal state with that dummy variable as the incoming bit (the concept of
dummy variables is used before, see [Bar09] for an explanation or [BMS15] for another
usage). Algorithm 1 is a generic way to form the SMT instances. For the mathematical
formulation of SMT, assume that the MILP solver returns a HWs sequence, HWp, such
that HWp[i][j]−ε ≤ HWorg[i][j] ≤ HWp[i][j]+ε for i ∈ {0, 1, . . . , N−1}, j ∈ {0, 1, . . . , 8}
and some fixed ε > 0, where N is the number of rounds and HWorg refers to the original
HW class.

Now HWp, key-stream Z, microcontroller size, tolerance ε and structure of the cipher
are the inputs to Algorithm 1. In Step 1, Nblock represents the number of consecutive
blocks for the internal state, each of size mclen. Since we are using modular operation, we
have to define modulus large enough to accommodate maximum HW of any block, which
is equal to the size of microcontroller, mclen. So, we use the modulus of 2blog2(mclen)c+1

operation 15 instead of arithmetic addition for HW, whereas for key-stream and update
function we use logical operation. Thus, define bitlen = blog2(mclen)c + 1 (Step 2).
Initialise the solver m. Define state variables Svar of size statelen, each of the structure
BitVec(·,bitlen) (Step 4). Similarly, define dummy variables of the same data structure
for each register and for each round. For each such defined variables, put the constraints
that its value is either 0 or 1, see Step 8. Now for each round, form the key-stream
equations (Step 10) and HW class equation (Step 13) and feed it to the solver. During the
state update operation, update the state normally (Step 15), extract update equations
(from updated positions), equate it to dummy variables (Step 18) and put dummy variables
at the updated positions (Step 19). Feed all the constraints to the SMT solver to solve. If
all of the HW classes predictions are within tolerance ε and the solver returns a solution in
a feasible time, then verify it (Step 26). If not verified, run SMT again by increasing the
number of rounds and predicted sequence length. If it returns inconsistent, that means at
least one predicted HW class fall outside the tolerance ε. For this case, follow the recovery
procedure given in Section 3.2.4.

In case of TRIVIUM, we can proceed with the generic Algorithm 1 by using the parameter
statelen = 288, Nblock = 9, r = 3, size of each register and their update position in the
internal state. We carried out the SMT experiment using a simulated cipher, where we
inject noise randomly (i.e., uniform distribution) to the original HW/HD information
within the given tolerance class. The results of the experiments are shown in Section 5.

4.3.4 Part IV: Putting It All Together

For the attack during the pseudo-random generation phase of TRIVIUM (see Section 5.1.1
for the relevant results), note that our framework is able to work in a single key/IV setting.

14BitVec(x,n) It defines an n-bit variable x. We can perform modulo 2n and logical operation
simultaneously on this data structure.

15For example, if mclen = 32 we can work in modulus 33, but since BitVec supports modulus operation
only in a power of two, we have to model it in modulus 64 = 26 = 2blog2(mclen)c+1.

Satyam Kumar, et al. 181

Algorithm 1 SMT modelling for SCA (from HW data)
Input:

i. Number of rounds, N
ii. Internal state size, statelen

iii. State registers R1, R2, . . . , Rr; with |Ri|= ri∀i
iv. Position to update in the state, pos
v. Microcontroller word size, mclen

vi. Tolerance, ε ≥ 0
vii. An array of size N , Z, that stores the key-stream
viii. Predicted classes HWp of size N ×Nblock

. Create Model
1: Nblock ← dstatelen ÷mclene . Number of blocks
2: bitlen← blog2(mclen)c+ 1 . bitlen ≥ dlog2 max(HW)e
3: m← Initialize Z3 solver
4: Define statelen number of BitVec variables for the internal state Svar, each of length bitlen-bit.
5: S ← Svar

6: Define dummy variables Rdum
i , (1 ≤ i ≤ r) as a bitlen-bit BitVec variable each is an array of size N − 1

. Generate constraints
7: var ← Svar + Rdum

1 + Rdum
2 + · · ·+ Rdum

r
8: Insert ULE(var[i], 1) for 0 ≤ i ≤ |var|−1 to the solver m . ULE : Unsigned ≤
9: for i← {0, 1, . . . , N − 1} do
10: Insert key-stream(S) = Z[i] to the solver m . (Optional)
11: for j ← {0, 1, . . . , Nblock − 1} do
12: HWequ[i][j]← S[mclen × j] + . . . + S[mclen × j + mclen − 1]
13: Insert (|HWequ[i][j]−HWp[i][j]|≤ ε) to m
14: end for
15: S ← update(S) . State update function
16: if i 6= N − 1 then
17: for j ← {1, . . . , r} do
18: Insert Rdum

j [i] = S[pos[j]] to m . Use dummy variables
19: S[pos[j]]← Rdum

j [i]
20: end for
21: end if
22: end for
23: if m is SAT then . Check SAT or UNSAT
24: Print m . Print model information
25: end if
26: Verify if solution is correct with key-stream . Sanity check

Also, attacking this phase is considerably more complex than attacking the initialisation
phase, the relevant results on which can be found in Section 5.1.2.

The same key/IV setting is set for the attack during the initialisation phase (results are
given in Section 5.1.2). In this case, since only 80 bits are now unknown (down from 288
in case of PRGA attack), the SMT solution time is drastically improved, even for higher
tolerance, thereby cutting of necessity of the correction by the MILP model (Section 3.2.3).

Note that Algorithm 1 employs constraints found in the forward direction only. We
can further utilise the backward equations, as the state update of TRIVIUM is invertible.
By doing so, we have more equations with less degree monomials of dummy variables,
which makes it easier to recover those variables. This idea is used only in the attack
during the key-stream generation phase, whereas for the initialisation phase only forward
equations are used as we start from round 0 to make use of IV. We optimize the Algorithm 1
further, by removing the condition 8, and defining all variables of the structure BitVec(·, 1)
i.e., 1-bit variable. For key-stream and update equation we can proceed as given in the
algorithm, whereas for HW equation we extend the variable size by appending zeroes using
the function ZeroExt(bitlen-1,·)16. This is to perform modulus 2bitlen operation on
HW constraints.

The solution for SMT instances are carried out with Z3/Python 3.8.5. The CPU
used for the computation is Intel Xeon CPU E5-2670 v3 @ 2.30GHz running a 64-bit
Ubuntu-20.04.

16ZeroExt(n,a): Returns a bit-vector expression with n extra zero-bits.

182 Side Channel Attack On Stream Ciphers

5 Results on TRIVIUM

5.1 Hamming Weight (Software) Model

5.1.1 Pseudo-random Phase

Table 5 shows the solution time taken by the SMT solver to produce unique solution under
HW/8, HW/16 and HW/32 models and with varying error tolerance (i.e., its input is a
sequence of predicted HW classes within error tolerance ε). In Table 5a, the key-stream
equations are not included in the modelling (only update and HW equations are used),
whereas Table 5(b) shows result when key-stream equations are included. Number of
rounds is initially selected to be near the half of the number of original variables (i.e., 110).
If the solution time is within few seconds and no multiple solutions is observed; then we
increase error tolerance by 1, otherwise we increase/decrease the number of rounds by
20–30 to check if solution time decreases and unique solution exists. If we take number of
rounds too low, then we generally have multiple solutions17.

In Table 5(a), under HW/8 model (recall the description of HW/8, HW/16 and HW/32
from Section 4.1) we can recover state bit up to the error tolerance 3, which is almost half
of the corresponding word size of the microcontroller. Beyond error tolerance 3, Z3 returns
multiple solutions even for higher rounds, and also takes longer time to solve. For HW/16
model, we could find solution for up to tolerance 4 in about 1–2 hours. For the 32-bit
microcontroller, the results are as described next. As per Tables 5(a) and 5(b), we have the
SMT solution time up to the error tolerance ε = 4. Table 4 shows results for the success
rate of MILP modelling only for tolerance 3, as in this case we have more results and
less SMT time. But for lower tolerance more predicted HWs are wrong (i.e., lies outside
the expected tolerance limit), which in turn makes SMT system of equations inconsistent
(as positions for wrong classes are unknown). Aforementioned MILP model can correct
these wrong HWs and return a sequence of HW classes within the tolerance 3 with a very
high success rate (see Table 4). We now describe the total solution time with respect to
tolerance 3 (as we have more solutions for this bound of tolerance, than that of 4). For 150
rounds, the success probability is 0.968 (see Table 4), Gurobi takes 6.38 seconds to solve
and the SMT solution time is 49975.49 second (see Table 5(a)). So the total required time
is 49981.87 seconds with a success probability of 0.968. The best result can be obtained
for 170 rounds (see Table 5(b)) with solution time 28755.36 + 7.86 = 28763.22 seconds
with probability 0.946 (only 1 sample is available). Similarly for 180 rounds, the solution
time is 36288.8 + 8.61 = 36297.41 seconds with success probability of 0.943.

Therefore, to conclude, we can recover the state bit of TRIVIUM in 28763.22 seconds for
170 rounds (with key-stream equations) with probability 0.946. The SMT solution time
is 36297.41 seconds for 180 rounds (without key-stream equations) with a success rate
of 0.943. We ignore the overhead time taken to form the SMT and MILP instances, as
it is within a few seconds. Note that, the success probability is less than 1. If the SMT
instance returns inconsistent in the first trial, then for next trial we can target the state at
different/same round during key-stream phase under same key/IV. Therefore, we do not
need to change IV or rerun the cipher for another trace.

For the computation of the success probability in n trails, note the following. Let p be
the success probability in first trial. Then the probability that we get success at least once
in n trials is 1− (1− p)n. The result above with best probability is 0.968 (150 rounds).
Therefore, on 2 trials we will succeed at least once with a probability of 0.9989.

17If multiple solutions are found, we increase the number of rounds until the unique solution is found.

Satyam Kumar, et al. 183

Table 5: Results on TRIVIUM in pseudo-random phase
(a) Without key-stream information

Leakage
Model Tolerance #

Rounds Trials
Mean
(sec.)

S.D.
(sec.)

H
W

/8 1 110 20 1.16 0.05
2 110 20 1.37 0.07
3 110 20 1.58 0.13

H
W

/1
6

1 110 20 3.91 0.94
2 110 20 7.38 2.18
3 110 20 15.41 6.35

4
110 20 91.40 187.50
130 20 40.01 22.85
150 20 39.89 18.62

H
W

/3
2

1 110 20 239.74 192.64

2 110 20 7975.88 9277.67
130 20 4764.87 4489.14

3
130 6 122582.24 65397.23
150 6 49975.49 31924.09
180 5 36288.8 27153.63

4
130 1 475778.30 –
150 3 49445.14 38190.05
170 2 226005.79 71432.18

(b) With key-stream information
Leakage
Model Tolerance #

Rounds Trials
Mean
(sec.)

S.D.
(sec.)

H
W

/3
2

0 110 20 5.42 1.255

1
70 20 1309.19 1144.36
90 20 821.76 1444.34
110 20 254.36 195.43

2

70 1 3408.72 –
90 8 17404.32 27533.08
110 16 10628.26 13962.97
130 20 1819.21 1558.38

3
110 1 140523.60 –
130 3 44911.09 31619.74
170 1 28755.36 –

4 130 1 76797.41 –
170 1 12582.60 –

5.1.2 Initialisation Phase

In the initialisation phase of TRIVIUM, the number of unknown variables reduces from 288
to 80 as only secret key bits (80 bits) are unknown. This enable us to solve the SMT
instance for higher tolerance, as we describe next. While the results in our paper are all
given with a single IV, we like to note that our SMT model can readily deal with multiple
IVs. Further, since for each IV the system gets some new information, the solution time
will likely be less and we can solve SMT instances for higher error tolerance.

Table 6: Results on TRIVIUM in the initialisation phase
Leakage Model Tolerance # Rounds Trials Mean (sec.) S.D. (sec.)

HW/8 4 150 20 1.63 0.28

HW/16

5 140 20 2.12 0.23
6 140 20 2.46 0.698
7 140 20 4.45 2.13
8 200 20 153.01 223.71

HW/32

3 140 20 4.93 1.55
4 140 20 8.58 6.90

5 140 20 10.39 11.39
160 20 11.64 6.44

6 140 20 27.07 34.97
7 170 20 79.49 121.89
8 160 20 211.89 636.58
9 160 20 162.08 186.37
10 160 20 585.56 1484.28
11 160 20 1018.86 1629.53
12 160 20 4560.34 5749.65
13 160 11 3646.35 3632.99

14
200 2 18379.19 5143.47
300 2 5566.90 4175.17
280 3 1460.03 1234.7

15 280 1 5859.60 –

Table 6 shows solution time for HW/8, HW/16 and HW/32 in the initialisation phase.
For a given tolerance, initially we select the number of rounds as 140 (as for 130–140 rounds
and tolerance 3–4 in key-stream generation phase, the SMT solution time is feasible) see
Tables 5a and 5b. Thereafter, if multiple solutions are observed then we increase the
number of rounds by 10 and solve. Notice under the HW/8 and HW/16 scenarios, we

184 Side Channel Attack On Stream Ciphers

reach at the optimal point at the half of the word size of the microcontroller18.
For the HW/32 model during the initialisation phase, we can solve up to error tolerance

15 (almost near to the optimal point). However, as per Table 3, HW class can be predicted
with 100% accuracy for error tolerance 7. Thus, we can create the SMT instance with any
tolerance beyond 6 and solution time can be found with probability 1. Therefore, we do
not use the MILP based correction here. In this case, we can achieve the best solution
time of 79.49 seconds (170 rounds) with probability 1.

On the other hand, as given in Table 3, the accuracy for tolerance 4 is 0.99965. Therefore
with HW information for 140 rounds (i.e., HW prediction of 140× 9 = 1260 blocks), on an
average 140× 9× 0.999655 ≈ 1260 HW data are within error tolerance of 4. Thus, we also
solve the SMT instance for tolerance 4 to obtain a solution within 8.58 seconds. If it returns
inconsistent, we increase the tolerance and solve the equations (refer to Section 3.2.4 for
more details on the recovery procedure).

5.2 Hamming Distance (Hardware) Model
On top of the MILP model for HW (as detailed in Section 4.3.2), the following observations
are used for MILP modelling for HD leakage model. Note that, the HD of a register changes
by {−1, 0, 1} during state update. Therefore, total changes for an n-register cipher changes
by {−n,−n+ 1, . . . , n− 1, n}. For SMT modelling, note that Algorithm 1 also holds for
HD model when the HW-constraints are replaced with the HD-constraints under modulus
2blog2(statelen)c+1 (as the maximum possible HD is equal to the state size, statelen).

5.2.1 Initialisation Phase

In Table 7, we present the results for TRIVIUM under HD model in the initialisation phase.
Let the internal state at the targeted round t be denoted as St = [s0, s1, . . . , s287], i.e., a
tuple of unknown variables. The last column indicates the location for the bits which are
guessed.In the same column, si · · · sj for 0 ≤ i ≤ j ≤ 287, denotes that all variables in the
range si, si+1, si+2, . . . , sj are guessed.

Table 7: Results for TRIVIUM on HD model
Phase Tolerance #Guess #Rounds Trials Mean (sec.) SD (sec.) Guessed Bit(s)

In
iti
al
isa

tio
n

0 0 90 20 238.06 418.42
0 0 100 20 144.84 443.75 –
0 0 150 20 121.64 197.83 –
1 0 200 4 71887.63 58920.45 –
1 5 200 5 22401.33 24507.83 s65 · · · s69
1 10 150 5 1802.77 1111.69 s60 · · · s69
1 10 150 5 11126.37 17273.22 s56 · · · s65
1 20 150 5 673.06 683.08 s60 · · · s79
1 20 200 5 442.68 528.62 s60 · · · s79
2 10 200 3 205110.06 112955.45 s56 · · · s65
2 30 200 5 223.98 126.74 s36 · · · s65
3 20 200 3 3603.99 3131.14 s46 · · · s65
3 20 220 3 62844.57 84668.85 s46 · · · s65
3 30 200 5 1012.02 1198.11 s40 · · · s69
3 30 200 5 2133.05 3129.14 s36 · · · s65

We tried up to tolerance 3 only, but it can also be extended for higher tolerance. The
guessed bits are chosen consecutively near the variables which are involved in state update
function. It is selected consecutively because during update the variables inside the register
are shifted to its right position, i.e., variable on the immediate right side of the tap19
position moves to the tap position in the next round. From Table 7, we can see that up to
tolerance 1 we can recover state bits without any guess. However for higher tolerance 2, we

18‘Optimal’ here means, beyond that tolerance we get multiple solutions even at higher rounds.
19By tap position, we refer to the position in the state which is used the key-stream/update function.

Satyam Kumar, et al. 185

need at least 10 guessed bits and for tolerance 3, we need at least 20 guessed bits. All of
that can be done in practical time. For guessing, we have to go through all the possibilities
and try SMT algorithm for each guess. However, the SMT time would be lower for a
wrong guess, i.e., it will return inconsistent for a wrong guess faster than consistent result
for the right guess.

5.2.2 Pseudo-random Phase

Regarding the pseudo-random phase, the system of constraints here has 288 unknown
variables which is quite high as compared to the 80 variables in the initialisation phase. We
do not get any result till 2 days. However, with a guess of 140 bits we get the result, but
doing so exceeds the complexity of exhaustive search on the key (which is only of 80-bits).
A probable reason behind this is that we have a large number of unknown variables and
the key-stream in TRIVIUM involves only 6 bits which does not carry enough information.
The higher effort required to attack pseudo-random phase as compared to initialization
phase can also further motivate use of levelled implementations [BBC+20], where resource
friendly countermeasures may be considered for pseudo-random phase, while initialization
must be well protected.

6 Success Probability with respect to varying SNR

We test our framework (in pseudo-random phase) with different SNRs. We add Gaussian
noise with 0 mean and different standard deviations to the previously used traces to simulate
low SNR settings. The parameters used are as follows: 220 data-set size, 50 epochs, MLP
with two hidden layers of 128 neurons each, a 62.5/12.5/25 training/validation/testing split
and a batch size of 64. We used the same MLP architecture that was used for the original
experiment. The accuracy of the output is then fed to MILP, which runs on a simulated
cipher and noises are injected as per the ML accuracy. We tested MILP experiments for
130 and 150 rounds as SMT solver needs information of either 130 rounds or 150 rounds for
state recovery under error tolerance 3 (see Table 5(a)). The MILP experiments are carried
out using 1000 random trials. Thus the success probability of MILP (success probability
of the whole experiment) with respect to varying standard deviation is shown in Table
8. From the table, we can see that beyond SNR 1.12124, the success probability drops
to 0. Thus, SNR 1.12124 is the threshold for our framework with the current experiment
setting. Alternatively, one can also optimise ML architecture to boost accuracy at lower
SNR (where possible), to perform key recovery at lower SNR.

Table 8: Success Probability with respect to SNR

Noise Standard
Deviation SNR

Testing Accuracy for different
error tolerance (ε)

Success Probability
w.r.t. different number of

rounds, N
0 1 2 3 N = 130 N = 150

3.5 2.34751 0.25324 0.66331 0.88699 0.97158 0.54 0.511
3.75 2.24475 0.26465 0.68409 0.90211 0.97717 0.614 0.614
4.3 2.05877 0.23549 0.62463 0.85628 0.95744 0.36 0.39
4.5 1.99083 0.23652 0.62912 0.86226 0.95995 0.331 0.323
5.0 1.83929 0.23549 0.62475 0.85615 0.95715 0.347 0.307
6.0 1.54966 0.20732 0.56019 0.79589 0.92121 0.094 0.066
6.2 1.50017 0.19534 0.53439 0.77478 0.90953 0.06 0.038
6.6 1.42157 0.19354 0.52944 0.76958 0.90731 0.044 0.033
7.5 1.21922 0.18766 0.51646 0.75444 0.89274 0.02 0.016
8.0 1.12124 0.18295 0.50795 0.74527 0.88698 0.016 0.016
9.0 0.95195 0.15937 0.44838 0.67646 0.83112 0.001 0.001
10.0 0.82012 0.14931 0.42224 0.6423 0.79988 0.0 0.0

186 Side Channel Attack On Stream Ciphers

7 Conclusion
In this paper, we show a pragmatic framework that recovers the state/key from stream
ciphers and related constructions from the side channel information (power or EM). Our
framework is able to attack the initialisation phase (i.e., before the cipher reaches its
pseudo-random phase) and, more importantly even after the cipher reaches its pseudo-
random phase to produce key-stream. The efficacy of our framework is shown through the
EM leakage from a 32-bit software platform on the high-profile stream cipher TRIVIUM in
Section 5.1. To add the cherry-on-top, we also show how our model can work with the
hardware leakage in Section 5.2.

Our framework is based on profiling of side channel leakage, i.e., it works at offline and
online stages. In the offline stage, the attacker collects information about the side channel
leakage to build a profile, which is then used during the online stage to find out secret
information. The analysis of the offline stage starts with an ML model (Section 4.3.1) where
we use an MLP with only 2 hidden layers. Since our target software platform has 33 HW
classes, our first intuition is to see the accuracy by the model for each of the individual 33
classes. In the process though, we discover that it is hard to go beyond 40% accuracy, even
with deeper networks. Thus, we introduce the concept of tolerance (denoted by ε), where we
broaden the scope for correct prediction from the ML model. For a given ε and the correct
class c, we count the prediction as correct with tolerance ε if the predicted class lies within
the 2ε+ 1 neighbourhood of c, i.e., {c− ε, c− ε+ 1, . . . , c, . . . , c+ ε− 1, c+ ε}. This allows
for a higher accuracy from the ML model as ε increases. The offline stage ends with an
SMT solving (Section 4.3.3), that returns the state/key of the cipher. However, increasing
ε comes with the catch that the solution time taken by the SMT solver increases. Thus, it
becomes important to find the proper balance where the ML accuracy is considerably high
and the solution time taken by the SMT solver is reasonably low. With our experimental
data from the 32-bit ARM Cortex-M3, we settle at ε = 3 where the ML accuracy is about
99.7%, and the SMT solution time with our target cipher TRIVIUM is about few hours.
Even though the ML accuracy is quite high, still certain wrong (i.e., outside the desired
ε limit) predictions will pass through. One such constraint, again, will make the system
inconsistent. To mitigate that, we introduce an intermediary between ML and SMT, which
is based on MILP (Section 4.3.2). This MILP model takes the sequence of predictions
from the ML model, and transforms (with a high probability) into another sequence where
all the predictions lie within the desired ε level.

Additionally, to test the limits of our approach for varying SNRs, we added Gaussian
noise to the previously measured traces. We observed that at SNR of ≈ 2 and ≈ 1.1, the ML
accuracy falls to 0.95744 and 0.88698 (for error tolerance 3), respectively. This decrease in
ML accuracy degrades the success probability of key recovery to roughly 0.36 (for SNR=2)
and 0.016 (for SNR=1.1). We note that one can explore different pre-processing techniques
and can optimise the ML architecture to mitigate the effect of low SNR on the success
probability.

To conclude, we list the following problems that may be of interest as follow-up works:
• Analytical approach for less than perfect accuracy: Our approach requires
a strict condition that the accuracy of the HW/HD prediction has to be 100%,
otherwise the SMT instance will become inconsistent. However, it may be possible
to come up with an analytical approach, such as a Hidden Markov Model (HMM),
that can work (with a high probability) when the accuracy is lower than 100%. This
can take some load from the ML module (Section 4.3.1) and can potentially remove
the MILP module (Section 4.3.2).

• Improvement of ML: First, while we attempt to find an efficient ML model, this
is not the focus of this research, and can likely be improved. For instance, one may
experiment with other types of ML models, such as Convolutional Neural Networks
(CNN), Recurrent Neural Networks (RNN), or Long Short-Term Memory (LSTM)

Satyam Kumar, et al. 187

networks. The electromagnetic traces can be treated as time series data and exploring
the feasibility of RNN/LSTM would be an interesting direction of study. Second, data
pre-processing techniques such as normalisation, scaling, and feature selection can
be used for a potential performance gain and improvement of the training stability.
For instance, instead of feeding the complete trace to the ML model, we can identify
points of interest and only use those to reduce the complexity. Third, the ML model
does not take into account the specifics of the cipher (those specifics are utilised
under the MILP module in Section 4.3.2). This can be considered in a more general
setting, ultimately cutting-off the MILP module.

• Form of leakage function: Extension of our framework for polynomial leakage
function [GSP13] and weighted HW/HD leakage function [DPRS11] instead of HW
(software) or HD (hardware) can be considered in the future. These leakage functions
will probably have an impact on our framework, as in our case, information on a
linear equation gives better results than the information on a general polynomial
equation. For a weighted leakage function, since the current SMT model works
on modular operations, for a negative weighted leakage function the SMT model
needs to be improved. Additionally, it also depends upon SNR of the side-channel
measurements.

References
[Bar09] Gregory Bard. Algebraic cryptanalysis. Springer Science & Business Media,

2009. 180

[BBC+20] Davide Bellizia, Olivier Bronchain, Gaëtan Cassiers, Vincent Grosso, Chun
Guo, Charles Momin, Olivier Pereira, Thomas Peters, and François-Xavier
Standaert. Mode-level vs. implementation-level physical security in symmetric
cryptography - A practical guide through the leakage-resistance jungle. In
Daniele Micciancio and Thomas Ristenpart, editors, Advances in Cryptology -
CRYPTO 2020 - 40th Annual International Cryptology Conference, CRYPTO
2020, Santa Barbara, CA, USA, August 17-21, 2020, Proceedings, Part I,
volume 12170 of Lecture Notes in Computer Science, pages 369–400. Springer,
2020. 185

[BCS21] Olivier Bronchain, Gaëtan Cassiers, and François-Xavier Standaert. Give me
5 minutes: Attacking ASCAD with a single side-channel trace. IACR Cryptol.
ePrint Arch., page 817, 2021. 170

[BDGN13] Shivam Bhasin, Jean-Luc Danger, Sylvain Guilley, and Zakaria Najm. NICV:
normalized inter-class variance for detection of side-channel leakage. IACR
Cryptol. ePrint Arch., page 717, 2013. 174

[BMS15] Anubhab Baksi, Subhamoy Maitra, and Santanu Sarkar. An improved slide
attack on Trivium. Journal IPSI Transaction on Internet Research, 2015. 180

[BS97] Eli Biham and Adi Shamir. Differential Fault Analysis of Secret Key Cryptosys-
tems. In Burton S. Kaliski, editor, Advances in Cryptology - CRYPTO ’97,
volume 1294 of Lecture Notes in Computer Science, pages 513–525. Springer
Berlin Heidelberg, 1997. 167

[CFGR12] Claude Carlet, Jean-Charles Faugère, Christopher Goyet, and Guénaël Renault.
Analysis of the algebraic side channel attack. J. Cryptogr. Eng., 2(1):45–62,
2012. 169

188 Side Channel Attack On Stream Ciphers

[CMM15] Abhishek Chakraborty, Bodhisatwa Mazumdar, and Debdeep Mukhopadhyay.
Combined side-channel and fault analysis attack on protected grain family of
stream ciphers. IACR Cryptol. ePrint Arch., 2015:602, 2015. 169

[CP08] Christophe De Cannière and Bart Preneel. Trivium. In Matthew J. B. Robshaw
and Olivier Billet, editors, New Stream Cipher Designs - The eSTREAM
Finalists, volume 4986 of Lecture Notes in Computer Science, pages 244–266.
Springer, 2008. 169

[DCP08] Christophe De Canniere and Bart Preneel. Trivium. In New stream cipher
designs, pages 244–266. Springer, 2008. 168, 171, 174

[DPRS11] Julien Doget, Emmanuel Prouff, Matthieu Rivain, and François-Xavier Stan-
daert. Univariate side channel attacks and leakage modeling. J. Cryptogr.
Eng., 1(2):123–144, 2011. 187

[FGKV07] Wieland Fischer, Berndt M. Gammel, O. Kniffler, and Joachim Velten. Differ-
ential power analysis of stream ciphers. In Masayuki Abe, editor, Topics in
Cryptology - CT-RSA 2007, The Cryptographers’ Track at the RSA Conference
2007, San Francisco, CA, USA, February 5-9, 2007, Proceedings, volume 4377
of Lecture Notes in Computer Science, pages 257–270. Springer, 2007. 169

[GBC+08] Benedikt Gierlichs, Lejla Batina, Christophe Clavier, Thomas Eisenbarth,
Aline Gouget, Helena Handschuh, Timo Kasper, Kerstin Lemke-Rust, Stefan
Mangard, Amir Moradi, and Elisabeth Oswald. Susceptibility of estream
candidates towards side channel analysis. sasc –the state of the art of stream
ciphers. In Workshop Record, pages 123–150, 2008. 167, 169

[GGSB20] Qian Guo, Vincent Grosso, François-Xavier Standaert, and Olivier Bronchain.
Modeling soft analytical side-channel attacks from a coding theory viewpoint.
IACR Trans. Cryptogr. Hardw. Embed. Syst., 2020(4):209–238, 2020. 170

[GSP13] Vincent Grosso, François-Xavier Standaert, and Emmanuel Prouff. Low
entropy masking schemes, revisited. In Aurélien Francillon and Pankaj Rohatgi,
editors, Smart Card Research and Advanced Applications - 12th International
Conference, CARDIS 2013, Berlin, Germany, November 27-29, 2013. Revised
Selected Papers, volume 8419 of Lecture Notes in Computer Science, pages
33–43. Springer, 2013. 187

[HJM07] Martin Hell, Thomas Johansson, and Willi Meier. Grain: a stream cipher for
constrained environments. Int. J. Wirel. Mob. Comput., 2(1):86–93, 2007. 169

[HKM17] Matthias Hamann, Matthias Krause, and Willi Meier. LIZARD - A lightweight
stream cipher for power-constrained devices. IACR Trans. Symmetric Cryptol.,
2017(1):45–79, 2017. 174

[HLM+20] Yonglin Hao, Gregor Leander, Willi Meier, Yosuke Todo, and Qingju Wang.
Modeling for three-subset division property without unknown subset - im-
proved cube attacks against trivium and grain-128aead. In EUROCRYPT
2020, Zagreb, Croatia, Proceedings, Part I, volume 12105 of Lecture Notes in
Computer Science, pages 466–495. Springer, 2020. 174

[HYY+10] Matthew Henricksen, Wun-She Yap, Chee Hoo Yian, Shinsaku Kiyomoto,
and Toshiaki Tanaka. Side-channel analysis of the K2 stream cipher. In
Ron Steinfeld and Philip Hawkes, editors, Information Security and Privacy -
15th Australasian Conference, ACISP 2010, Sydney, Australia, July 5-7, 2010.
Proceedings, volume 6168 of Lecture Notes in Computer Science, pages 53–73.
Springer, 2010. 169

Satyam Kumar, et al. 189

[Jaf07] Joshua Jaffe. A first-order DPA attack against AES in counter mode with
unknown initial counter. In Pascal Paillier and Ingrid Verbauwhede, editors,
Cryptographic Hardware and Embedded Systems - CHES 2007, 9th Interna-
tional Workshop, Vienna, Austria, September 10-13, 2007, Proceedings, volume
4727 of Lecture Notes in Computer Science, pages 1–13. Springer, 2007. 169

[JBL19] Martin Jurecek, Jirí Bucek, and Róbert Lórencz. Side-channel attack on the
a5/1 stream cipher. In 2019 22nd Euromicro Conference on Digital System
Design (DSD), pages 633–638. IEEE, 2019. 169

[KAA+17] Asif Raza Kazmi, Mehreen Afzal, Muhammad Faisal Amjad, Haider Abbas,
and Xiaodong Yang. Algebraic side channel attack on trivium and grain
ciphers. IEEE Access, 5:23958–23968, 2017. 169

[KEI+21] Hayato Kimura, Keita Emura, Takanori Isobe, Ryoma Ito, Kazuto Ogawa,
and Toshihiro Ohigashi. Output prediction attacks on block ciphers using
deep learning. Cryptology ePrint Archive, Report 2021/401, 2021. https:
//eprint.iacr.org/2021/401. 175

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.
In Michael J. Wiener, editor, Advances in Cryptology - CRYPTO ’99, 19th
Annual International Cryptology Conference, Santa Barbara, California, USA,
August 15-19, 1999, Proceedings, volume 1666 of Lecture Notes in Computer
Science, pages 388–397. Springer, 1999. 167

[Koc96] Paul C. Kocher. Timing attacks on implementations of diffie-hellman, rsa,
dss, and other systems. In Neal Koblitz, editor, Advances in Cryptology
- CRYPTO ’96, 16th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 18-22, 1996, Proceedings, volume 1109 of
Lecture Notes in Computer Science, pages 104–113. Springer, 1996. 167

[LH17] Ilya Loshchilov and Frank Hutter. Fixing weight decay regularization in adam.
CoRR, abs/1711.05101, 2017. 175

[MBZ+13] Mohamed Saied Emam Mohamed, Stanislav Bulygin, Michael Zohner, Annelie
Heuser, Michael Walter, and Johannes Buchmann. Improved algebraic side-
channel attack on AES. J. Cryptogr. Eng., 3(3):139–156, 2013. 170

[MOP07] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power analysis attacks
- revealing the secrets of smart cards. Springer, 2007. 167, 174

[OKPW10] Yossef Oren, Mario Kirschbaum, Thomas Popp, and Avishai Wool. Algebraic
side-channel analysis in the presence of errors. In Stefan Mangard and François-
Xavier Standaert, editors, Cryptographic Hardware and Embedded Systems,
CHES 2010, 12th International Workshop, Santa Barbara, CA, USA, August
17-20, 2010. Proceedings, volume 6225 of Lecture Notes in Computer Science,
pages 428–442. Springer, 2010. 170

[ORSW12] Yossef Oren, Mathieu Renauld, François-Xavier Standaert, and Avishai Wool.
Algebraic side-channel attacks beyond the hamming weight leakage model. In
Emmanuel Prouff and Patrick Schaumont, editors, Cryptographic Hardware
and Embedded Systems - CHES 2012 - 14th International Workshop, Leuven,
Belgium, September 9-12, 2012. Proceedings, volume 7428 of Lecture Notes in
Computer Science, pages 140–154. Springer, 2012. 169, 170

[Pee13] Eric Peeters. Advanced DPA Theory and Practice: Towards the Security Limits
of Secure Embedded Circuits. Springer-Verlag New York, 1 edition, 2013. 167

https://eprint.iacr.org/2021/401
https://eprint.iacr.org/2021/401

190 Side Channel Attack On Stream Ciphers

[PHJ+17] Stjepan Picek, Annelie Heuser, Alan Jovic, Simone A. Ludwig, Sylvain Guilley,
Domagoj Jakobovic, and Nele Mentens. Side-channel analysis and machine
learning: A practical perspective. In 2017 International Joint Conference on
Neural Networks (IJCNN), pages 4095–4102, 2017. 175

[QGGL13] Bo Qu, Dawu Gu, Zheng Guo, and Junrong Liu. Differential power analysis
of stream ciphers with lfsrs. Comput. Math. Appl., 65(9):1291–1299, 2013. 169

[RO04] Christian Rechberger and Elisabeth Oswald. Stream ciphers and side-channel
analysis. In In ECRYPT Workshop, SASC-The State of the Art of Stream
Ciphers, pages 320–326. Citeseer, 2004. 167, 169

[RS09] Mathieu Renauld and François-Xavier Standaert. Algebraic side-channel
attacks. In Feng Bao, Moti Yung, Dongdai Lin, and Jiwu Jing, editors,
Information Security and Cryptology - 5th International Conference, Inscrypt
2009, Beijing, China, December 12-15, 2009. Revised Selected Papers, volume
6151 of Lecture Notes in Computer Science, pages 393–410. Springer, 2009.
169

[RSV09] Mathieu Renauld, François-Xavier Standaert, and Nicolas Veyrat-Charvillon.
Algebraic side-channel attacks on the AES: why time also matters in DPA.
In Christophe Clavier and Kris Gaj, editors, Cryptographic Hardware and
Embedded Systems - CHES 2009, 11th International Workshop, Lausanne,
Switzerland, September 6-9, 2009, Proceedings, volume 5747 of Lecture Notes
in Computer Science, pages 97–111. Springer, 2009. 169, 170

[RSV+11] Mathieu Renauld, François-Xavier Standaert, Nicolas Veyrat-Charvillon, Dina
Kamel, and Denis Flandre. A formal study of power variability issues and side-
channel attacks for nanoscale devices. In Kenneth G. Paterson, editor, Advances
in Cryptology - EUROCRYPT 2011 - 30th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Tallinn, Estonia,
May 15-19, 2011. Proceedings, volume 6632 of Lecture Notes in Computer
Science, pages 109–128. Springer, 2011. 174

[SJB20] Siang Meng Sim, Dirmanto Jap, and Shivam Bhasin. Dapa: Differential
analysis aided power attack on (non-) linear feedback shift registers (extended
version). IACR Cryptol. ePrint Arch., 2020:1241, 2020. 169, 174

[SMB17] Santanu Sarkar, Subhamoy Maitra, and Anubhab Baksi. Observing biases
in the state: case studies with Trivium and Trivia-SC. Design, Codes and
Cryptography, 82(1-2):351–375, 2017. 174

[Str09] Daehyun Strobel. Side channel analysis attacks on stream ciphers.
Masterarbeit Ruhr-Universität Bochum, Lehrstuhl Embedded Security,
2009. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.
182.1943&rep=rep1&type=pdf. 169

[TA15] Erica Tena-Sánchez and Antonio J. Acosta. DPA vulnerability analysis on
trivium stream cipher using an optimized power model. In 2015 IEEE Inter-
national Symposium on Circuits and Systems, ISCAS 2015, Lisbon, Portugal,
May 24-27, 2015, pages 1846–1849. IEEE, 2015. 169

[TSA15] Erica Tena-Sánchez and Antonio J Acosta. Optimized dpa attack on trivium
stream cipher using correlation shape distinguishers. In 2015 Conference on
Design of Circuits and Integrated Systems (DCIS), pages 1–6. IEEE, 2015. 169

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.182.1943&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.182.1943&rep=rep1&type=pdf

Satyam Kumar, et al. 191

[VGS14] Nicolas Veyrat-Charvillon, Benoît Gérard, and François-Xavier Standaert. Soft
analytical side-channel attacks. In Palash Sarkar and Tetsu Iwata, editors,
Advances in Cryptology - ASIACRYPT 2014 - 20th International Conference on
the Theory and Application of Cryptology and Information Security, Kaoshiung,
Taiwan, R.O.C., December 7-11, 2014. Proceedings, Part I, volume 8873 of
Lecture Notes in Computer Science, pages 282–296. Springer, 2014. 170

[ZWG+11] Xinjie Zhao, Tao Wang, Shize Guo, Fan Zhang, Zhijie Shi, Huiying Liu, and
Kehui Wu. Sat based error tolerant algebraic side-channel attacks. In 2011
Conference on Cryptographic Algorithms and Cryptographic Chips, CASC,
2011. 170

	Introduction
	Related Works
	Attack Methodology
	Brief Overview of the Framework
	Description of the Framework

	Evaluation of Our Framework
	Configuration
	Experimental Setup
	Hamming Weight (Software) Model

	Results on TRIVIUM
	Hamming Weight (Software) Model
	Hamming Distance (Hardware) Model

	Success Probability with respect to varying SNR
	Conclusion

