

Preliminary Program

Conference Chairs:

Núria Barniol, *Universitat Autonoma de Barcelona, SPAIN* Franz Lärmer, *Robert Bosch GmbH, GERMANY*

Conference Location:

Science Congress Center Munich

Sponsored by:

The Executive Committee has the right to change dates and times if needed.

Sunday, 15 January

All times are Central European Time (CET).

Industry Session

13:00 - 17:00

17:00 – 19:00 Conference Registration and Check-In

Welcome Reception

17:00 - 19:00

Monday, 16 January

All times are Central European Time (CET).

Welcome Address

08:00 MEMS 2023 Conference Chairs

Núria Barniol, *Universitat Autonoma de Barcelona, SPAIN* Franz Lärmer, *Robert Bosch GmbH, GERMANY*

- IEEE Fellows Recognition in the Field of MEMS/NEMS
 - IEEE Electron Devices Society Robert Bosch Micro and Nano Electro Mechanical Systems Award

08:35 IEEE Electron Devices Society Robert Bosch
Micro and Nano Electro Mechanical Systems Award Recipient

Plenary Presentation I

08:50 FROM ETCH TO EDGE AI: OPENING NEW HORIZONS WITH SMART SENSOR TECHNOLOGIES

Stefan Finkbeiner

Bosch Sensortec GmbH, GERMANY

Session I - Novel MEMS/NEMS Devices for Computing/Imaging

09:35 SUB-300 MILLIVOLT OPERATION IN NONVOLATILE 300 NM X 100 NM PHASE CHANGE NANOELECTROMECHANICAL SWITCH

Mohammad Ayaz Masud and Gianluca Piazza Carnegie Mellon University, USA

09:50 A FAST AND ENERGY-EFFICIENT NANOELECTROMECHANICAL NON-VOLATILE MEMORY FOR IN-MEMORY COMPUTING

Yong-Bok Lee¹, Min-Ho Gang², Pan-Kyu Choi¹, Su-Hyun Kim¹,

Tae-Soo Kim¹, So-Young Lee¹ and Jun-Bo Yoon¹

¹Korea Advanced Institute of Science and Technology (KAIST), KOREA and

²National NanoFab Center (NNFC), KOREA

10:05 TOWARDS ULTRA-HIGH SPATIAL RESOLUTION SENSING OF GHZ ULTRASOUND USING STRAIN MODULATION OF FIELD EFFECT TRANSISTORS

Rohan Sanghvi¹, Justin Kuo², Adarsh Ravi¹, and Amit Lal¹ Cornell University, USA and ²Geegah Inc., USA

10:20 A TACTILE SENSOR ARRAY WITH A MONOLITHICALLY INTEGRATED NEURAL NETWORK FOR EDGE COMPUTATION

Tengteng Lei, Yushen Hu, and Man Wong Hong Kong University of Science and Technology, HONG KONG

10:35 Break & Exhibit Inspection

Session II - BioMEMS I

11:05 EVALUATION OF LOCAL AND INTERNAL ELASTICITY OF HYDROGEL MATERIALS BY USING LIGHT-DRIVEN GEL ACTUATOR

Hibiki Nakajima¹, Yuha Koike¹, Yoshiyuki Yokoyama², Masaya Hagiwara³, and Takeshi Hayakawa¹
¹Chuo University, JAPAN, ²Toyama Industrial Technology Research and Development Center, JAPAN, and
³RIKEN, JAPAN

11:20 3D PRINTED MINIATURIZED SOFT MICROSWIMMER FOR MULTIMODAL 3D AIR-LIQUID NAVIGATION AND MANIPULATION

Dominique Decanini¹, Abdelmounaim Harouri¹, Ayako Mizushima², Beomjoon Kim², Yoshio Mita², and Gilgueng Hwang^{1,2}

¹Paris-Saclay University, FRANCE and ²University of Tokyo, JAPAN

11:35 SELF-DRIVEN CAPILLARIC VISCOMETER FOR DIRECT OR CASCADED BAR GRAPH READ-OUT OF RELATIVE SAMPLE VISCOSITY

Daniel Mak¹, R. Claude Meffan^{1,2}, Julian Menges¹, Fabian Dolamore¹, Conan Fee¹, Renwick C.J. Dobson¹, and Volker Nock¹

¹University of Canterbury, NEW ZEALAND and ²Kyoto University, JAPAN

11:50 A FLEXIBLE BIOSENSING PLATFORM FOR HIGH-THROUGHPUT MEASUREMENT OF CARDIOMYOCYTE CONTRACTILITY

Wenkun Dou¹, Jason Maynes², and Yu Sun¹

¹University of Toronto, CANADA and ²Hospital for Sick C

¹University of Toronto, CANADA and ²Hospital for Sick Children, CANADA

12:05 FLEXIBLE BI-DIRECTIONAL BRAIN COMPUTER INTERFACE FOR CONTROLLING TURNING BEHAVIOR OF MICE

Yifei Ye¹, Ye Tian^{1,2}, Han Wang¹, Qian Cheng¹, Kuikui Zhang¹, Xueying Wang^{1,2}, Cunkai Zhou¹, Chengjian Xu¹, Xiaoling Wei^{1,2}, Zhitao Zhou^{1,2}, Tiger H. Tao^{1,2,3,4,5,6}, and Liuyang Sun^{1,2}

¹Chinese Academy of Sciences, CHINA, ²University of Chinese Academy of Sciences, CHINA, ³ShanghaiTech University, CHINA, ⁴Neuroxess Co., Ltd. (Jiangxi), CHINA, ⁵Guangdong Institute of Intelligence Science and Technology, CHINA, and ⁶Tiangiao and Chrissy Chen Institute for Translational Research, CHINA

12:20 Lunch & Exhibit Inspection

Session III - MEMS Inertial Sensors and Power MEMS

13:45 HIGH SENSITIVITY MEMS Z-AXIS ACCELEROMETER WITH IN-PLANE DIFFERENTIAL READOUT

Valentina Zega¹, Gabriele Gattere², Manuel Riani², Francesco Rizzini², and Attilio Frangi¹ *Politecnico di Milano, ITALY and ²STMicroelectronics, ITALY*

14:00 TWO-AXIS ELECTROMAGNETIC SCANNER INTEGRATED WITH AN ELECTROSTATIC XY-STAGE POSITIONER

Yuki Okamoto, Hironao Okada, and Masaaki Ichiki

National Institute of Advanced Industrial Science and Technology (AIST), JAPAN

14:15 MEMS SHOCK ABSORBERS INTEGRATED WITH AL₂O₃-REINFORCED, MECHANICALLY RESILIENT NANOTUBE ARRAYS

Hojoon Lee¹, Eunhwan Jo¹, Jae-Ik Lee², and Jongbaeg Kim¹ *Yonsei University, KOREA and ²Harvard Medical School, USA*

14:40 HIGH-INDUCTANCE-DENSITY MEMS 3D-SOLENOID TRANSFORMERS WITH INSERTED THIN-FILM FERRITE MAGNETIC CORE FOR ON-CHIP INTEGRATED DC-DC POWER CONVERSIONS

Changnan Chen^{1,2}, Pichao Pan^{1,2}, Jiebin Gu^{1,2}, and Xinxin Li^{1,2}

¹Chinese Academy of Sciences, CHINA and ²University of Chinese Academy of Sciences, CHINA

Poster/Oral Session I

14:45 Poster/Oral Session I

Poster presentations are listed by topic category with their assigned number starting on Page 14.

16:15 Break & Exhibit Inspection

MEMS Community Announcement

16:45 Clark T.-C. Nguyen, University of California, Berkeley, USA

Session IV - BioMEMS II

16:50 MICRON-SIZED PARYLENE-IN-OIL WATER PROTECTION LAYER

Kuang-Ming Shang¹, Haixu Shen¹, Ningxuan Dai¹, David Kong^{1,2}, Tzung Hsiai³, and Yu-Chong Tai¹ California Institute of Technology, USA, ²Harvard University, USA, and ³University of California, Los Angeles, USA

17:05 A PIPETTE TIP INTEGRATED WITH A CAPACITIVE MICROSENSOR FABRICATED BY COMBINED 3D PRINTING AND MEMS PROCESS FOR CELL DETECTION AND TRANSPORTATION

Satoshi Amaya, Hirotaka Sugiura, Bilal Turan, Shingo Kaneko, and Fumihito Arai *University of Tokyo, JAPAN*

17:20 FOLDABLE POLYMER STENT INTEGRATED WITH WIRELESS PRESSURE SENSOR FOR BLOOD PRESSURE MONITORING

Nomin-Erdene Oyunbaatar and Dong-Weon Lee *Chonnam National University, KOREA*

17:35 A DYNAMIC MICROARRAY DEVICE FOR SELECTIVE PAIRING AND ELECTROFUSION OF LIPOSOMES

Sho Takamori¹, Hisatoshi Mimura¹, Toshihisa Osaki¹, and Shoji Takeuchi^{1,2}
¹Kanagawa Institute of Industrial Science and Technology, JAPAN and ²University of Tokyo, JAPAN

17:50 REAL-TIME FUNCTIONAL BRAIN MAPPING BASED ON HIGH-CHANNEL-COUNT, ULTRA-CONFORMAL NEURAL INTERFACE

Xiner Wang^{1,2}, Zhaohan Chen³, Jizhi Liang^{1,2}, Xiaoling Wei^{1,2}, Liuyang Sun^{1,2}, Meng Li^{1,2}, Zhitao Zhou^{1,2}, and Tiger H. Tao^{1,2,4,5,6}

¹Chinese Academy of Sciences, CHINA, ²University of Chinese Academy of Science, CHINA,

³Shanghai Normal University, CHINA, ⁴Neuroxess Co., Ltd. (Jiangxi), CHINA,

⁵Guangdong Institute of Intelligence Science and Technology, CHINA, and

⁶Tianqiao and Chrissy Chen Institute for Translational Research, CHINA

18:05 Adjourn for the day

Tuesday, 17 January

All times are Central European Time (CET).

Plenary Presentation II

08:30 ACOUSTOFLUIDICS: MERGING ACOUSTICS AND FLUID MECHANICS FOR BIOMEDICAL APPLICATIONS

Tony Jun Huang Duke University, USA

Session V - New Materials, Fabrication, and Packaging

09:15 SILICON CARBIDE REINFORCED VERTICALLY ALIGNED CARBON NANOTUBE COMPOSITE FOR HARSH ENVIRONMENT MEMS

Jiarui Mo, Shreyas Shankar, Guoqi Zhang, and Sten Vollebregt Delft University of Technology, NETHERLANDS

09:30 A RELIABLE RELEASE METHOD FOR A BACK-END-OF-LINE NEMS SWITCH OF A MONOLITHIC THREE-DIMENSIONAL INTEGRATED CMOS-NEMS CIRCUIT

Tae-Soo Kim, Yong-Bok Lee, So-Young Lee, Seung-Jun Lee, and Jun-Bo Yoon Korea Advanced Institute of Science and Technology (KAIST), KOREA

09:45 INCREASE OF EXPANSION RATE AND DIRECTION CONTROL OF MICROGEL ACTUATORS FOR SINGLE CELL MANIPULATIONS

Kyoka Nakano¹, Hiroki Wada¹, Yoshiyuki Yokoyama², and Takeshi Hayakawa¹

¹Chuo University, JAPAN and ²Toyama Industrial Technology Research and Development Center, JAPAN

10:00 GENERALIZED-ACCUMULATED-TEMPERATURE PARAMETER FOR CHARACTERISTIC PREDICTION OF METAL-BASED MEMS CANTILEVER

Yulong Zhang¹, Jianwen Sun¹, Huiliang Liu², and Zewen Liu¹
¹Tsinghua University, CHINA and ²China Academy of Space Technology, CHINA

10:15 Break and Exhibit Inspection

Session VI - Micro- and Nanofluidics and Medical Applications

10:45 MEMS-BASED WATER COLLECTION CONDENSATION PARTICLE COUNTER (WCCPC) OPTIMIZED FOR MULTI-POINT MONITORING OF AIRBORNE NANOPARTICLES

Seong-Jae Yoo and Yong-Jun Kim *Yonsei University, KOREA*

11:00 RECONSTITUTING FUNDAMENTALS OF BACTERIA MEDIATED CANCER THERAPY ON A CHIP

Wonjun Lee¹, Jiin Park², Dongil Kang³, and Seungbeum Suh⁴

¹Seoul National University, KOREA, ²Ewha Womans University, KOREA, ³Hanyang University, KOREA, and ⁴Korea Institute of Science and Technology (KIST), KOREA

11:15 3D SPATIAL FOCAL CONTROL BY ARRAYED OPTOFLUIDIC PRISMS

Cheng-Hsun Lee, Yeonwoo Lee, and Sung-Yong Park San Diego State University, USA

11:30 HIGH-SPEED AND PINPOINT LIQUID EXCHANGE ON MICROFLUIDIC CHIP USING 3D PRINTED DOUBLE-BARRELED MICROPROBE WITH DUAL PUMPS

Xu Du¹, Shingo Kaneko², Hisataka Maruyama¹, Hirotaka Sugiura², and Fumihito Arai^{1,2}
¹Nagoya University, JAPAN and ²University of Tokyo, JAPAN

11:45 DESIGN OF A DNA SYNTHESIS CHIP FOR DATA STORAGE WITH ULTRA-HIGH THROUGHPUT AND DENSITY FEATURING LARGE-SCALE INTEGRATED CIRCUITS AND MICROFLUIDIC CONFINEMENT

Ning Wang^{1,2,3}, Shijia Yang^{1,3}, Dayin Wang^{1,2,3}, Zhen Cao⁴, Yuan Luo^{1,3}, and Jianlong Zhao^{1,3}
¹Chinese Academy of Sciences, CHINA, ²ShanghaiTech University, CHINA,
³University of Chinese Academy of Sciences, CHINA, and ⁴Zhejiang University, CHINA

MEMS 2024 Announcement

16:45 MEMS 2024 Conference Chairs

Wen Li, Michigan State University, USA Dana Weinstein, Purdue University, USA

12:15 Lunch & Exhibit Inspection

Session VII - MEMS Fluidic Sensors

13:15 A REAL-TIME WIRELESS CALORIMETRIC FLOW SENSOR SYSTEM WITH A WIDE LINEAR RANGE FOR LOW-COST RESPIRATORY MONITORING

 $Lifeng\ Huang^1,\ Izhar^{2,4},\ Xiaoyong\ Zhou^3,\ Mingdong\ Fang^3,\ Siwei\ Huang^1,$

Yi-Kuen Lee², Xiaofang Pan¹, and Wei Xu¹

¹Shenzhen University, CHINA, ²Hong Kong University of Science and Technology, CHINA,

³Mindray Medical International Limited, CHINA, and ⁴University of Pennsylvania, USA

13:30 ADVANCED THERMOPHYSICAL PROPERTIES MEASUREMENTS USING HEATER-INTEGRATED FLUIDIC RESONATORS

Juhee Ko, Bong Jae Lee, and Jungchul Lee

Korea Advanced Institute of Science and Technology (KAIST), KOREA

13:45 A MINIATURIZED TRANSIT-TIME ULTRASONIC FLOWMETER USING PMUTS FOR LOW-FLOW MEASUREMENT IN SMALL-DIAMETER CHANNELS

Yunfei Gao^{1,2}, Zhipeng Wu², Minkan Chen², and Liang Lou^{1,2}

¹Shanghai University, CHINA and ²Shanghai Industrial μ Technology Research Institute, CHINA

14:00 MEMS DIFFERENTIAL THERMOPILES FOR HIGHLY-SENSITIVE HYDROGEN GAS DETECTION

Haozhi Zhang^{1,2}, Hao Jia^{1,2}, Ming Li^{1,2}, Pengcheng Xu^{1,2}, and Xinxin Li^{1,2}

¹Chinasa Academy of Sciences CHINA and ²University of Chinasa Academy

¹Chinese Academy of Sciences, CHINA and ²University of Chinese Academy of Sciences, CHINA

Poster/Oral Session II

14:15 Poster/Oral Session II

Poster presentations are listed by topic category with their assigned number starting on Page 14.

15:45 Break & Exhibit Inspection

Session VIII - Sonics & Ultrasonics MEMS

16:15 DOMAIN/BOUNDARY VARIATION IN CANTILEVER ARRAY FOR BANDWIDTH ENHANCEMENT OF PZT MEMS MICROSPEAKER

Shu-Wei Chang¹, Ting-Chou Wei¹, Sung-Cheng Lo², and Weileun Fang¹

¹National Tsing Hua University, TAIWAN and ²Transducer Star Technology Inc., TAIWAN

16:30 ON THE DESIGN OF PIEZOELECTRIC MEMS MICROSPEAKER WITH HIGH FIDELITY AND WIDE BANDWIDTH

Ting-Chou Wei, Zih-Song Hu, Shu-Wei Chang, and Weileun Fang National Tsing Hua University, TAIWAN

16:45 HIGH-PERFORMANCE WAFER-SCALE TRANSFER-FREE GRAPHENE MICROPHONES

Roberto Pezone, Gabriele Baglioni, Pasqualina M. Sarro, Peter G. Steeneken, and Sten Vollebregt Delft University of Technology, NETHERLANDS

17:00 HIGH-SPL AND LOW-DRIVING-VOLTAGE PMUTS BY SPUTTERED POTASSIUM SODIUM NIOBATE

Fan Xia^{1,2}, Yande Peng^{1,2}, Sedat Pala^{1,2}, Ryuichi Arakawa^{1,3}, Wei Yue^{1,2}, Pei-Chi Tsao², Chun-Ming Chen², Hanxiao Liu^{1,2}, Megan Teng², Jong Ha Park^{1,2}, and Liwei Lin^{1,2}

¹Berkeley Sensor and Actuator Center, USA, ²University of California, Berkeley, USA, and ³NGK Spark Plug Co., JAPAN

17:15 EPITAXIAL P_B(Z_R,T₁)O₃-BASED PIEZOELECTRIC MICROMACHINED ULTRASONIC TRANSDUCER FABRICATED ON SILICON-ON-NOTHING (SON) STRUCTURE

Takuma Sekiguchi¹, Shinya Yoshida², Yoshiaki Kanamori¹, and Shuji Tanaka¹ Tohoku University, JAPAN and ²Shibaura Institute of Technology, JAPAN

17:30 Adjourn for the day

19:00 Banquet at the Löwenbräu Keller - 22:00

MEMS 2022 welcomes you to the historic Löwenbräu Keller. Join us for a memorable evening of networking with colleagues in a traditional German beer hall.

This event is included in your registration. Guest tickets may be purchased. Transportation is not included, but the U-Bahn stop is a 1-minute walk to the event.

Wednesday, 18 January

All times are Central European Time (CET).

Plenary Presentation III

08:30 LEVERAGING SEMICONDUCTOR ECOSYSTEMS TO MEMS

Weileun Fang, Sheng-Shian Li, and Ming-Huang Li National Tsing Hua University, TAIWAN

⁶Hospital Universitario 12 de Octubre, SPAIN

Session IX - Optomechanics & Photonics Integration

09:15 PROGRAMMABLE SILICON NITRIDE PHOTONIC INTEGRATED CIRCUITS

Hao Tian¹, Alaina G. Attanasio¹, Anat Siddharth², Andrey Voloshin², Viacheslav Snigirev², Grigory Lihachev², Andrea Bancora², Vladimir Shadymov², Rui N. Wang², Johann Riemensberger², Tobias J. Kippenberg², and Sunil A. Bhave¹

¹Purdue University, USA and ²Swiss Federal Institute of Technology Lausanne (EPFL), SWITZERLAND

09:30 MULTIFREQUENCY NANOMECHANICAL MASS SPECTROMETER PROTOTYPE FOR MEASURING VIRAL PARTICLES USING OPTOMECHANICAL DISK RESONATORS

Oscar Malvar¹, Eduardo Gil-Santos¹, Jose J. Ruz¹, Elena Sentre-Arribas¹, Adrián Sanz-Jiménez¹, Priscila M. Kosaka¹, Sergio García-López¹, Álvaro San Paulo¹, Samantha Sbarra², Louis Waquier², Ivan Favero², Maurits van der Heiden³, Robert K. Altmann³, Dimitris Papanastasiou⁴, Diamantis Kounadis⁴, Ilias Panagiotopoulos⁴, Jesús Mingorance⁵, María Rodríguez-Tejedor⁵, Rafael Delgado⁶, Montserrat Calleja¹, and Javier Tamayo¹

¹Instituto de Micro y Nanotechnologis, IMN-CSIC, CSIC (CEI UAM+CSIC), SPAIN, ²Université Paris Cité, FRANCE, ³The Netherland Organization for Applied Scientific Research (TNO), NETHERLANDS,

09:45 A MICROFABRICATED DIAMOND QUANTUM MAGNETOMETER WITH PICOTESLA SCALE SENSITIVITY

⁴Fasmatech Science and Technology, GREECE, ⁵Hospital Universitario La Paz, SPAIN, and

Fei Xie^{1,2}, Qihui Liu^{1,2}, Yuqiang Hu^{3,4}, Lingyun Li^{1,2}, Zhichao Chen^{1,2}, Jin Zhang¹, Yonggui Zhang^{1,2}, Yuyao Zhang^{3,4}, Yang Wang^{1,2}, Jiangong Cheng^{1,2}, Hao Chen^{1,2}, and Zhenyu Wu^{1,2,3,4}

¹Chinese Academy of Sciences, CHINA, ²University of Chinese Academy of Sciences, CHINA, ³Shanghai University, CHINA, and ⁴Shanghai Industrial μTechnology Research Institute, CHINA

10:00 Break & Exhibit Inspection

Session X - RF MEMS Filters & Resonators (5G & 6G)

10:30 A NON-VOLATILE THRESHOLD SENSING SYSTEM USING A FERROELECTRIC HF_{0.5}ZR_{0.5}O₂ DEVICE AND A L₁N_bO₃ MICROACOUSTIC RESONATOR

Onurcan Kaya, Luca Colombo, Benyamin Davaji, and Cristian Cassella Northeastern University, USA

10:45 RESONANT CONFINERS FOR ACOUSTIC LOSS MITIGATION IN BULK ACOUSTIC WAVE RESONATORS

Jeronimo Segovia-Fernandez and Ernest T.-T. Yen *Texas Instruments, Kilby Labs, USA*

11:00 HIGH-CRYSTALLINITY 30% SCALN ENABLING HIGH FIGURE OF MERIT X-BAND MICROACOUSTIC RESONATORS FOR MID-BAND 6G

Gabriel Giribaldi, Pietro Simeoni, Luca Colombo, and Matteo Rinaldi *Northeastern University, USA*

11:15 FERRITE-ROD ANTENNA DRIVEN WIRELESS RESOSWITCH RECEIVER

Kevin H. Zheng, Qiutong Jin, and Clark T.-C. Nguyen *University of California, Berkeley, USA*

11:30 ULTRA-WIDEBAND MEMS FILTERS USING LOCALIZED THINNED 128° Y-CUT THIN-FILM LITHIUM NIOBATE

Jinbo Wu^{1,2,3}, Shibin Zhang¹, Pengcheng Zheng^{1,2}, Liping Zhang^{1,2}, Hulin Yao^{1,2}, Xiaoli Fang^{1,2}, Xuedi Tian^{1,2}, Xiaomeng Zhao¹, Tao Wu³, and Xin Ou^{1,2}

¹Shanghai Institute of Microsystem and Information Technology, CHINA,

²University of Chinese Academy of Sciences, CHINA, and ³Shanghai Tech University, CHINA

11:45 Lunch & Exhibit Inspection

Session XIa - MEMS/NEMS Resonators & Non-Linear Dynamics

13:00 ATTRACTOR EXCHANGER FOR OPEN-LOOP OPERATION OF MICROMECHANICAL NONLINEAR RESONATORS USING GAP-SPACING CONTINUATION

Chun-Pu Tsai and Wei-Chang Li National Taiwan University, TAIWAN

13:15 A CMOS-MEMS ULTRASENSITIVE THERMOMETER USING INTERNAL RESONANCE INDUCED FREQUENCY COMBS

Ting-Yi Chen, Chun-Pu Tsai, and Wei-Chang Li National Taiwan University, TAIWAN

13:30 ATOMICALLY THIN NEMS FREQUENCY COMB WITH BOTH FREQUENCY TUNABILITY AND RECONFIGURABLE VIA SIMULTANEOUS 1:2 AND 1:3 MODE COUPLING

Bo Xu, Jiankai Zhu, Chenyin Jiao, Jianglong Chen, and Zenghui Wang University of Electronic Science and Technology of China, CHINA

13:45 INSTRUMENTAL ANALYSIS OF ADVANCED CATALYSTS BASED ON RESONANT MICROCANTILEVERS

Xinyu Li^{1,2}, Pengcheng Xu^{1,2}, Ying Chen¹, Haitao Yu¹, and Xinxin Li^{1,2}

¹Chinese Academy of Sciences, CHINA and ²University of Chinese Academy of Sciences, CHINA

Session XIb - BioSensors I

13:00 A MULTIPLEXED BIOAFFINITY BIOSENSING PATCH FOR POINT-OF-CARE CHRONIC ULCER MONITORING

Md Sharifuzzaman, Dongkyun Kim, Md Selim Reza, SeongHoon Jeong, Hye Su Song, Md Abu Zahed, and Jae Yeong Park *Kwangwoon University, KOREA*

13:15 3-DOF BIOHYBRID ACTUATOR WITH MULTIPLE SKELETAL MUSCLE TISSUES

Xinzhu Ren, Yuya Morimoto, and Shoji Takeuchi *University of Tokyo, JAPAN*

13:30 A LOW NOISE MICROELECTRODE ARRAY FOR SPECIFIC CELL ACTIVITY MODULATION FROM CELL TO TISSUE

Bohan Zhang^{1,2}, Huiran Yang², Xiner Wang^{2,3}, Ziyi Zhu^{2,3}, Zongxing He¹, Wanqi Jiang^{2,3}, Chen Tao^{1,2}, Dujuan Zou^{2,3}, Meng Li^{2,3}, Zhitao Zhou^{2,3}, Liuyang Sun^{2,3}, Tiger H. Tao^{1,2,3,4,5,6}, and Xiaoling Wei^{2,3}

¹ShanghaiTech University, CHINA, ²Chinese Academy of Sciences, CHINA, ³University of Chinese Academy of Sciences, CHINA, ⁴Neuroxess Co., Ltd. (Jiangxi), CHINA, ⁵Guangdong Institute of Intelligence Science and Technology, CHINA, and ⁶Tiangiao and Chrissy Chen Institute for Translational Research, CHINA

13:45 BIONIC MECHANICAL HAND INTEGRATED WITH ARTIFICIAL OLFACTORY SENSOR ARRAY FOR ENHANCED OBJECT RECOGNITION

Jiachuang Wang^{1,2}, Xiaohui Li^{1,2}, MengWei Liu^{1,2}, Pingping Zhang³, Tiger H. Tao^{1,2,4}, and Nan Qin^{1,2}
¹Chinese Academy of Sciences, CHINA, ²University of Chinese Academy of Sciences, CHINA,
³Suzhou Huiwen Nanotechnology Co., Ltd., CHINA, and ⁴Neuroxess Co., Ltd. (Jiangxi), CHINA

Poster/Oral Session III

14:00 Poster/Oral Session III

Poster presentations are listed by topic category with their assigned number starting on Page 14.

15:30 Break & Exhibit Inspection

Session XIIa - Force & Displacement/ Tactile Sensors & Human-Machine

16:00 HIGH RESOLUTION TACTILE SENSOR FOR MEASUREMENT OF A COMPLICATED TACTILE FEELING OF "SHITTORI" WITH MOISTNESS

Genki Yamada, Yuto Morita, Kyohei Terao, Fusao Shimokawa, and Hidekuni Takao Kagawa University, JAPAN

16:15 PYRAMIDAL STRUCTURED MXENE/ECOFLEX COMPOSITE-BASED TOROIDAL TRIBOELECTRIC SELF-POWERED SENSOR FOR HUMAN-MACHINE INTERFACE

Shipeng Zhang, Sm Sohel Rana, Gagan Bahad Pradhan, Trilochan Bhatta, Seonghoon Jeong, and Jae Yeong Park

Kangwoon University, KOREA

16:30 LIG-BASED TRIAXIAL TACTILE SENSOR UTILIZING ROTATIONAL ERECTION SYSTEM

Rihachiro Nakashima¹, Nagi Nakamura², Tomohiko G. Sano¹, Eiji Iwase², and Hidetoshi Takahashi¹ *Keio University, JAPAN and ²Waseda University, JAPAN*

16:45 A STRETCHABLE STRAIN-INSENSITIVE SMART GLOVE FOR SIMULTANEOUS DETECTION OF PRESSURE AND TEMPERATURE

Sudeep Sharma, Gagan Bahadur Pradhan, Seonghoon Jeong, and Jae Yeong Park Kwangwoon University, KOREA

17:00 A GESTURE RECOGNITION GLOVE ASSEMBLED WITH NANOFOREST-INTEGRATED INFRARED THERMOPILES

Mao Li^{1,2}, Meng Shi^{1,2}, Guidong Chen^{1,2}, Na Zhou^{1,2}, Haiyang Mao^{1,2}, and Chengjun Huang^{1,2}

¹Chinese Academy of Sciences, CHINA and ²University of Chinese Academy of Sciences, CHINA

Session XIIb - BioSensors II

16:00 ONE PUSH MEMBRANE FORMATION FOR ITERATIVE MEASUREMENT OF ION CHANNEL ACTIVITY ON ARRAYED CHIP

Hisatoshi Mimura¹, Toshihisa Osaki^{1,2}, Sho Takamori¹, Kenji Nakao², and Shoji Takeuchi^{1,3}
¹Kanagawa Institute of Industrial Science and Technology (KISTEC), JAPAN,
²Maqsys Inc., JAPAN, and ³University of Tokyo, JAPAN

16:15 AN IMPLANTABLE DIFFERENTIAL SENSOR WITH PASSIVE WIRELESS INTERROGATION FOR IN-SITU EARLY DETECTION OF PERIPROSTHETIC JOINT INFECTION

Jiaxin Jiang, Cole Napier, Chandrashekhar Choudhary, H. Claude Sagi, Chia-Ying Lin, Michael T. Archdeacon, and Tao Li *University of Cincinnati, USA*

16:30 MICROMACHINED PIEZOELECTRIC FILM-BASED FLEXIBLE ELECTRONICS WITH INTEGRATION OF FILM-SELF TEMPERATURE-DETECTING BREATH SENSOR AND ACETONE GAS SENSOR

Hung-Yu Yeh and Guo-Hua Feng National Tsing Hua University, TAIWAN

16:45 FLEXIBLE TACTILE SENSING ARRAY WITH HIGH SPACIAL DENSITY BASED ON PARYLENE MEMS TECHNIQUE

Meixuan Zhang¹, Zetian Wang¹, Han Xu², Lang Chen¹, Yufeng Jin^{2,3}, and Wei Wang^{1,3,4}
¹Peking University, CHINA, ²Peking University Shenzhen Graduate School, CHINA,
³National Key Lab of Micro/Nano Fabrication Technology, CHINA, and
⁴Beijing Advanced Innovation Center for Integrated Circuits, CHINA

17:00 SILK-ENABLED FOLDABLE AND CONFORMAL NEURAL INTERFACE WITH IN-PLANE SHIELDING FOR HIGH-QUALITY ELECTROPHYSIOLOGICAL RECORDINGS

Jizhi Liang^{1,2}, Zhaohan Chen^{1,3}, Xiner Wang^{1,2}, Feihong Xu^{1,2}, Xiaoling Wei^{1,2}, Liuyang Sun^{1,2}, Meng Li^{1,2}, Tiger H. Tao^{1,2,4,5,6,7}, and Zhitao Zhou^{1,2}

¹Chinese Academy of Sciences, CHINA, ²University of Chinese Academy of Sciences, CHINA, ³Shanghai Normal University, CHINA, ⁴ShanghaiTech University, CHINA, ⁵Neuroxess Co., Ltd. (Jiangxi), CHINA, ⁶Guangdong Institute of Intelligence Science and Technology, CHINA and ⁷Tiangiao and Chrissy Chen Institute for Translational Research, CHINA

17:15 Adjourn for the day

Thursday, 19 January

All times are Central European Time (CET).

Plenary Presentation IV

08:30 MATERIALS ENGINEERING FOR CHEMICAL SENSING ENHANCEMENT

Navpreet Kaur, Dario Zappa, and Elisabetta Comini *University of Brescia, ITALY*

Session XIII - Gas & Flow Sensors

09:15 ON-DEMAND PREPARATION OF GAS-SENSING MATERIALS GUIDED BY RESONANT CANTILEVER-BASED THERMOGRAVIMETRIC ANALYSIS

Yufan Zhou^{1,2}, Ming Li^{1,2}, Ying Chen^{1,2}, Xinyu Li^{1,2}, Pengcheng Xu^{1,2}, and Xinyu Li^{1,2}

¹Chinese Academy of Sciences, CHINA and ²University of Chinese Academy of Sciences, CHINA

09:30 AN INTELLIGENT GAS ANALYSIS SYSTEM CONSISTING OF SENSORS AND A NEURAL NETWORK IMPLEMENTED USING THIN-FILM TRANSISTORS

Zong Liu^{1,2}, Yushen Hu^{1,2}, Gabriel E. Carranza¹, Fei Wang², and Man Wong¹ Hong Kong University of Science and Technology, HONG KONG and ²Southern University of Science and Technology, CHINA

09:45 SINGLE-LAYER-ELECTRODE TEMPERATURE-MODULATED SNO₂ GAS SENSOR CELL WITH LOW POWER CONSUMPTION FOR DISCRIMINATION OF FOOD ODORS

Chong Xing, Ruichen Liu, Yan Zhang, Dongcheng Xie, Yudong Wang, Yuan Huang, Muhammad Mustafa, Haochen Zhang, Zhongyu Shi, Lei Xu, and Feng Wu *University of Science and Technology of China, CHINA*

10:00 A PERFORMANCE ENHANCED THERMAL FLOW SENSOR WITH NOVEL DUAL-HEATER STRUCTURE USING CMOS COMPATIBLE FABRICATION PROCESS

Zhongyi Liu¹, Ruoqin Wang², Gai Yang¹, Xinyuan Zhang¹, Rui Jiao², Xuejiao Li¹, Jiali Qi³, Hongyu Yu², Huikai Xie^{1,4}, and Xiaoyi Wang^{1,4}

¹Beijing Institute of Technology, CHINA, ²Hong Kong University of Science and Technology, HONG KONG, ³Hangzhou Dianzi University, CHINA, and

⁴BIT Chongging Institute of Microelectronics and Microsystems, CHINA

Session XIV - New Fabrication Techniques

10:45 LOCAL METAL DEPOSITION ON HYDROGELS USING MICRO-PLASMA-BUBBLES

Haruna Takahashi, Yu Yamashita, Naotomo Tottori, Shinya Sakuma, and Yoko Yamanishi *Kyushu University, JAPAN*

11:00 FOLDING METHOD OF KIRIGAMI STRUCTURE WITH FOLDING LINES

Nagi Nakamura and Eiji Iwase Waseda University, JAPAN

11:15 BUBBLE-ASSISTED RE-FORMATION OF INDIVIDUAL LIPID BILAYERS IN ARRAYED DEVICE

Izumi Hashimoto^{1,2}, Toshihisa Osaki², Hisatoshi Mimura², Sho Takamori², Norihisa Miki^{1,2}, and Shoji Takeuchi^{2,3}

¹Keio University, JAPAN, ²Kanagawa Institute of Industrial Science and Technology, JAPAN, and ³University of Tokyo, JAPAN

11:30 LARGE-SCALE ARRAYS OF TUNABLE MONOLAYER MoS2 NANOELECTROMECHANICAL RESONATORS

Zuheng Liu¹, Luming Wang³, Pengcheng Zhang¹, Maosong Xie¹, Yueyang Jia¹, Ying Chen⁴, Hao Jia⁴, Zenghui Wang³, and Rui Yang^{1,2}

¹University of Michigan – Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University,

¹University of Michigan – Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, CHINA, ²School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, CHINA, ³University of Electronic Science and Technology of China, CHINA, and ⁴Chinese Academy of Sciences, CHINA

Awards Ceremony

11:45 Awards Ceremony

11:55 Final Remarks

12:00 Conference Ajourns

POSTER PRESENTATIONS

All times are Central European Time (CET).

M - Monday, 16 January - 13:45 - 15:45 T - Tuesday, 17 January - 13:30 - 15:30 W - Wednesday, 18 January - 13:30 - 15:30

Classification Chart

(last character of poster number)

- a Bio and Medical MEMS
- **b** Emerging Technologies and New Opportunities for MEMS/NEMS
- c Industry MEMS and Advancing MEMS for Products and Sustainability
- d Materials, Fabrication and Packaging for Generic MEMS and NEMS
- e MEMS Actuators and PowerMEMS
- f MEMS Physical and Chemical Sensors
- g Micro- and Nanofluidics
- h Optical, RF and Electromagnetics for MEMS/NEMS
- i Open Posters

a - Bio and Medical MEMS

Biosensors and Bioreactors

ANTIFOULING FOR ELECTROCHEMICALLY BIOSENSING IN BODY FLUIDS M101-a

Wenzheng He¹, Changdong Zhou², Yang Lin², Yuxin Tian², Liying Liu², Qifu Zhang², Xiongying Ye¹, and Tianhong Cui³

¹Tsinghua University, CHINA, ²Jilin Cancer Hospital, CHINA, and ³University of Minnesota, USA

ELECTRO-MAGNETIC SENSOR MEDIATED BY MAGNETIC BIOMOLECULES T201-a

Qian Cheng^{1,2}, Yuqing Ge¹, Hongju Mao^{1,2}, Lin Zhou¹, and Jianlong Zhao^{1,2}

¹Chinese Academy of Science, CHINA and ²University of Chinese Academy of Sciences, CHINA

W301-a GAS-FLOW DEVICE FOR EFFECTIVE DISSOLUTION OF GAS-PHASE ODORANTS UTILIZED FOR BIOHYBRID SENSORS

Takuma Nakane^{1,2}, Toshihisa Osaki², Hisatoshi Mimura², Sho Takamori²,

Norihisa Miki^{1,2}, and Shoji Takeuchi^{2,3}

¹Keio University, JAPAN, ²Kanagawa Institute of Industrial Science and Technology, JAPAN, and ³University of Tokyo, JAPAN

MULTIPLE WELLS ON A CMOS-MEA FOR CELL-BASED BIOHYBRID ODORANT SENSORS M102-a

Yujia Lian, Haruka Oda, Minghao Nie, and Shoji Takeuchi

University of Tokyo, JAPAN

T202-a THE INTEGRATED RGO/PEDOT: PSS-MODIFIED ULTRAFLEXIBLE MICROELECTRODES TOWARDS LONG-TERM NEUROPHYSIOLOGICAL SIGNALING AND DOPAMINE SENSITIVE **DETECTION**

Xueying Wang^{1,2}, Huiran Yang¹, Bohan Zhang^{1,3}, Meng Li^{1,2}, Liuyang Sun^{1,2}, Zhitao Zhou^{1,2}, Tiger H. Tao^{1,2,3,4,5,6}, and Xiaoling Wei^{1,2}

¹Chinese Academy of Sciences, CHINA, ²University of Chinese Academy of Sciences, CHINA, ³Shanghai Tech University, CHINA, ⁴Neuroxess Co., Ltd. (Jiangxi), CHINA, ⁵Guangdong Institute of Intelligence Science and Technology, CHINA, and ⁶Tiangiao and Chrissy Chen Institute for Translational Research, CHINA

a - Bio and Medical MEMS

Devices & Systems for Cellular and Molecular Studies

W302-a COMPARISON OF SELECTIVE FILTRATION OF ON-CHIP GLOMERULUS COMPRISED OF ORGANOID-DERIVED AND IMMORTALIZED PODOCYTES

Ayumu Tabuchi¹, Kensuke Yabuuchi^{2,3}, Yoshiki Sahara², Minoru Takasato^{2,4}, Kazuya Fujimoto¹, and Ryuji Yokokawa¹

¹Kyoto university, JAPAN, ²RIKEN, JAPAN, and ³Osaka University, JAPAN

M103-a CONTROLLING FIRING POINT OF MICROFIBER-SHAPED HIPSC-DERIVED CARDIAC TISSUE WITH LOCALIZED ELECTRICAL STIMULATION DEVICE

Akari Masuda¹, Shun Itai¹, Yuta Kurashina², Shugo Tohyama¹, and Hiroaki Onoe¹

¹Keio University, JAPAN and ²Tokyo University of Agriculture and Technology, JAPAN

T203-a DEVELOPMENTAL PHASES OF ON-CHIP VASCULOGENESIS CLASSIFIED USING A DEEP LEARNING VISUAL MODEL

Taiga Irisa, Hang Zhou, Kazuya Fujimoto, and Ryuji Yokokawa Kyoto University, JAPAN

W303-a HAND-DRIVEN DEVICE FOR PREPARATION OF LINEARLY ALIGNED HYDROGEL SHEETS

Aoi Kato^{1,2}, Haruka Oda³, Sho Takamori², Hisatoshi Mimura², Toshihisa Osaki²,

Norihisa Miki^{1,2}, and Shoji Takeuchi^{2,3}

¹Keio University, JAPAN, ²Kanagawa Institute of Industrial Science and Technology, JAPAN, and ³University of Tokyo, JAPAN

M104-a MICROFABRICATION AND CHARACTERIZATION OF MICRO-

STEREOLITHOGRAPHICALLY 3D PRINTED, AND DOUBLE METALLIZED BIOPLATES WITH 3D MICROELECTRODE ARRAYS FOR *IN-VITRO* ANALYSIS OF CARDIAC ORGANOIDS

Jorge Manrique Castro, Isaac Johnson, and Swaminathan Rajaraman *University of Central Florida, USA*

T204-a OIL-SEALED RGD-MODIFIED HYDROGEL MICROWELL ARRAY WITH SIZE- SELECTIVE PERMEATION FOR ANALYSIS ON EXOSOMES FROM SINGLE CELLS

Chisaki Yamagata¹, Shun Itai¹, Yuta Kurashina², Makoto Asai¹, Ayuko Hoshino³, and Hiroaki Onoe¹ Keio University, JAPAN, ²Tokyo University of Agriculture and Technology, JAPAN, and ³Tokyo Institute of Technology, JAPAN

W304-a PICKING SINGEL CELLS FROM 10 ML SAMPLE BASED ON A MICROFILTRATION- LIFT COMBINATION PLATFORM

Qingmei Xu^{1,2}, Yuntong Wang^{2,3}, Xiao Ma⁴, Hang Li⁵, Ying Xue⁵, Yi Zhang¹, Songtao Dou¹, Huan Wang², Bei Li^{2,5}, and Wei Wang^{1,6,7}

¹Peking University, CHINA, ²Chinese Academy of Sciences, CHINA, ³University of Chinese Academy of Sciences, CHINA, ⁴Hangzhou Branemagic Medical Technology Co. Ltd., CHINA, ⁵Hooke Laboratory, CHINA, ⁶National Key Lab of Micro/Nano Fabrication Technology, CHINA, and ⁷Beijing Advanced Innovation Center for Integrated Circuits, Beijing, CHINA

a - Bio and Medical MEMS

Flexible and Wearable Devices and Systems

M105-a A TRANSFER METHOD FOR EMBEDDING CONDUCTIVE FILLERS ON THE SURFACE OF MULTI-SCALE STRUCTURES FOR 3D FLEXIBLE CONDUCTORS

Dongwoo Yoo, Sangmok Kim, Jeonghyeon Hwang, and Joonwon Kim Pohang University of Science and Technology (POSTECH), KOREA

T205-a FABRICATION OF HIGH FREQUENCY 2D FLEXIBLE PMUT ARRAY

Sanjog V. Joshi, Sina Sadeghpour, and Michael Kraft *KU Leuven, BELGIUM*

W305-a FLEXIBLE SILK-BASED GRAPHENE BIOELECTRONICS FOR WEARABLE MULTIMODAL PHYSIOLOGICAL MONITORING

Sajjad Mirbakht¹, Ata Golparvar^{1,2}, Muhammad Umar¹, and Murat Kaya Yapici^{1,3}

¹Sabanci University, TURKEY, ²École Polytechnique Fédérale de Lausanne (EPFL), SWITZERLAND, and ³University of Washington, USA

M106-a HIGHLY ACCURATE MEASUREMENT OF CONTACT RESISTANCE BETWEEN GALINSTAN AND COPPER USING TRANSFER LENGTH METHOD

Takashi Sato and Eiji Iwase Waseda University, JAPAN

T206-a MACHINE LEARNING ENABLED HIND FOOT DEFORMITY DETECTION USING INDIVIDUALLY ADDRESSABLE HYBRID PRESSURE SENSOR MATRIX

Nadeem Tariq Beigh, Faizan Beigh, Sourav Naval, Dibyajyoti Mukherjee, and Dhiman Mallick *Indian Institute of Technology, Delhi, INDIA*

W306-a MULTI-MODE E-SKIN INTEGRATING CAPACITIVE-PIEZOELECTRIC SENSORS FOR STATIC-DYNAMIC MECHANORESPONSE WITH WIDE SENSING RANGE

Mujeeb Yousuf¹, Sushil Kumar¹, Dhairya Singh Arya², Manu Garg¹, Khanjhan Joshi¹, and Pushpapraj Singh¹ *Indian Institute of Technology, Delhi, INDIA and*

²CSIR-Central Scientific Instruments Organisation (CSIO), INDIA

M107-a NON-INVASIVE INSTANT MEASUREMENT OF ARTERIAL STIFFNESS BASED ON HIGH-DENSITY FLEXIBLE SENSOR ARRAY

Fang Wang^{1,2}, Heng Yang^{1,2}, Ke Sun¹, Yi Sun¹, and Xinxin Li^{1,2}

¹Chinese Academy of Sciences, CHINA and ²University of Chinese Academy of Sciences, CHINA

T207-a SUPPRESSION OF BIOELECTRICAL NOISE SIGNALS IN MOTION STATE BY LOW-COST MICROPILLAR HYDROGEL ELECTRODE

Gencai Shen, Nan Zhao, Chunpeng Jiang, Zhuangzhuang Wang, and Jingquan Liu Shanghai Jiao Tong University, CHINA

W307-a ULTRA-THIN MEMS PACKAGING BASED ON AUXETIC STRETCHABLE STRUCTURES FOR APPLICATIONS IN WEARABLE ELECTRONICS

Daniel Zymelka, Toshihiro Takeshita, Yusuke Takei, and Takeshi Kobayashi National Institute of Advanced Industrial Science and Technology, JAPAN

M108-a ULTRALOW POWER FLEXIBLE OCULAR MICROSYSTEM FOR VERGENCE AND DISTANCE SENSING BASED ON PASSIVE DIFFERENTIAL MAGNETOMETRY

Adwait Deshpande, Mohit U. Karkhanis, Chayanjit Ghosh, Hanseup Kim, and Carlos H. Mastrangelo *University of Utah, USA*

a - Bio and Medical MEMS Manufacturing for Bio- & Medical MEMS

T208-a ELECTROHYDRODYNAMIC NEBULISER (eNEB) FOR DIRECT PULMONARY DRUG DELIVERY APPLICATION

Trung-Hieu Vu¹, Luan Ngoc Mai^{2,3}, Tuan-Hung Nguyen¹, Dang Tran¹, Tuan-Khoa Nguyen¹, Thanh Nguyen⁴, Jarred Fastier-Woollel^{1,5}, Canh-Dung Tran⁴, Toan Dinh⁴, Hong-Quan Nguyen¹, Dzung Viet Dao¹, and Van Thanh Dau¹

¹Griffith University, AUSTRALIA, ²Ho Chi Minh City University of Technology (HCMUT), VIETNAM ³Vietnam National University, VIETNAM, ⁴University of Southern Queensland, AUSTRALIA, and ⁵University of Tokyo, JAPAN

W308-a FLEXIBLE POLYMER OPTICAL WAVEGUIDES FOR INTEGRATED OPTOGENETIC BRAIN IMPLANTS

Julian A. Singer¹, Till Stramm², Jens Fasel², Oliver Schween², Anton Gelaeschus¹, Andreas Bahr^{1,3}, and Matthias Kuhl⁴

¹Hamburg University of Technology, GERMANY, ²TU Dortmund University, GERMANY,

³University of Kiel, GERMANY, and ⁴University of Freiburg, GERMANY

M109-a HIGHLY REPRODUCIBLE TISSUE POSITIONING WITH TAPERED PILLAR DESIGN IN ENGINEERED HEART TISSUE PLATFORMS

Milica Dostanic^{1,2}, Laura M. Windt², Maury Wiendels², Berend J. van Meer², Christine L. Mummery^{2,3}, Pasqualina M. Sarro¹, and Massimo Mastrangeli¹

¹Delft University of Technology, NETHERLANDS, ²Leiden University Medical Center, NETHERLANDS, and ³University of Twente, NETHERLANDS

T209-a IN VITRO ASSEMBLY OF MUSCLE RINGS AND BIOPRINTED HYDROGEL FOR BRANCHING TUBULAR TISSUE CONSTRUCTS

Tomohiro Morita, Byeongwook Jo, Minghao Nie, and Shoji Takeuchi *University of Tokyo, JAPAN*

W309-a MICROELECTRODES FABRICATED BY VACUUM FILLING WITH LOW MELTING-POINT ALLOY FOR MUSCLE TISSUE STIMULATION

Tingyu Li, Minghao Nie, Yuya Morimoto, and Shoji Takeuchi *University of Tokyo, JAPAN*

M110-a OPTOELECTRONIC INTEGRATED ULTRAMICROELECTRODE FOR OPTICAL STIMULATION AND ELECTRICAL RECORDING OF SINGLE-CELL

Qingda Xu, Ye Xi, Zhiyuan Du, Longchun Wang, Tao Ruan, Mengfei Xu, Jiawei Cao, Bin Yang, and Jingquan Liu Shanghai Jiao Tong University, CHINA

T210-a THERMOFORMING OF PARYLENE C TO FORM HELICAL STRUCTURES

Brianna L. Thielen and Ellis Meng

University of Southern California, Los Angeles, USA

a - Bio and Medical MEMS

Materials for Bio- and Medical MEMS

W310-a FABRICATION OF BIODEGRADABLE SOFT TISSUE-MIMICKED MICROELECTRODE ARRAYS FOR IMPLANTED NEURAL INTERFACING

Wei-Chen Huang¹, Wan-Lou Lei¹, and Chih-Wei Peng²

¹National Yang Ming Chiao Tung University, TAIWAN and ²Taipei Medical University, TAIWAN

a - Bio and Medical MEMS

Medical Microsystems

M111-a AN OPTIMIZATION OF PERFORATION DESIGN ON A PIEZOELECTRIC-BASED SMART STENT FOR BLOOD PRESSURE MONITORING AND LOW-FREQUENCY VIBRATIONAL ENERGY HARVESTING

Jun Ying Tan¹, Sayemul Islam², Yuankai Li³, Albert Kim², and Jungkwun "JK" Kim¹

¹University of North Texas, USA, ²University of South Florida, USA, and ³Kansas State University, USA

W311-a DEVELOPMENT OF AN ELECTRICAL-STIMULATION-INDUCED MECHANOMYOGRAM PROBE FOR MUSCLE CONTRACTION CHARACTERISTICS EVALUATION

Yusuke Takei, Toshihiro Takeshita, Daniel Zymelka, and Takeshi Kobayashi National Institute of Advanced Industrial Science and Technology (AIST), JAPAN

M112-a DUAL-FREQUENCY PIEZOELECTRIC MICROMACHINED ULTRASONIC TRANSDUCERS FOR FUNDAMENTAL AND HARMONIC IMAGING

Yanfen Zhai, Waleed Maqsood, Zhou Da, Nikolai Andrianov, Yucheng Zhang, Mohssen Moridi, and Lixiang Wu

Silicon Austria Labs GmbH, AUSTRIA

T212-a FRACTAL MICROELECTRODES INTEGRATED WITH THE CATHETER FOR LOW-VOLTAGE PULSED FIELD ABLATION

Mengfei Xu¹, Mu Qin², Ziliang Song³, Wen Hong¹, Qingda Xu¹, Jiawei Cao¹,

Kejun Tu¹, Longchun Wang¹, Bin Yang¹, and Jingquan Liu¹

¹Shanghai Jiao Tong University, CHINA,

²Shanghai Chest Hospital Affiliated to Shanghai Jiao Tong University, CHINA, and

³Shanghai General Hospital Shanghai Jiao Tong University School of Medicine, CHINA

W312-a HIERARCHICAL BONDING YIELD TEST STRUCTURE FOR FLEXIBLE HIGH CHANNEL-COUNT NEURAL PROBES INTERFACING ASIC CHIPS

Marie C. Odenthal, Victor Claar, Oliver Paul, and Patrick Ruther *University of Freiburg, GERMANY*

M113-a MICROWAVE-INDUCED THERMOACOUSTIC IMAGING USING ALUMINUM NITRIDE PMUT

Yiwei Wang¹, Lejia Zhang¹, Junxiang Cai^{1,2,3}, Baosheng Wang^{1,2,3},

Yuandong Alex Gu⁵, Liang Lou⁵, Xiong Wang^{1,2,3,4}, and Tao Wu^{1,2,3,4}

¹ShanghaiTech University, CHINA and ²Chinese Academy of Sciences, CHINA, ³University of Chinese Academy of Sciences, CHINA, ⁴Shanghai Engineering Research Center of Energy Efficient and Custom AI IC, CHINA, and ⁵Shanghai Industrial μTechnology Research Institute, CHINA

T213-a NEEDLE-FREE DRUG INJECTION USING A SHOCK WAVE FOCUSING SYSTEM WITH THE FUNCTION OF REAL-TIME MICROBUBBLE-BASED DISTANCE SENSING

Yibo Ma, Wenjing Huang, Keita Ichikawa, and Yoko Yamanishi Kyushu University, JAPAN

W313-a NEW WAFER-LEVEL FABRICATION OF ULTRATHIN SILICON INSERTION SHUTTLES FOR FLEXIBLE NEURAL IMPLANTS

Kirti Sharma¹, Christian Boehler¹, Maria Asplund^{1,2}, Oliver Paul¹, and Patrick Ruther¹ *University of Freiburg, GERMANY and ²Chalmers University of Technology, SWEDEN*

M114-a REAL-TIME DYNAMIC LACTATE DETECTION IN A PIPELINE USING A MICROSENSING NEEDLE FOR ICU PATIENT MONITORING APPLICATION

Yuan-Sin Tang¹, Tung-Lin Yang², Yu-Ting Cheng¹, Hsiao-En Tsai^{2,3}, and Yih-Shurng Chen^{3,4}
¹National Yang Ming Chiao Tung University, TAIWAN, ²National Taiwan Hospital HsinChu Branch, TAIWAN, ³National Taiwan University College of Medicine Graduate Institute of Clinical Medicine, TAIWAN, and ⁴National Taiwan University Hospital, TAIWAN

T214-a THREE-DIMENSIONAL FLEXIBLE NEURAL OPTO-ELECTRONIC ARRAY WITH SILK-BASED SHUTTLE-FREE IMPLANTATION

Chi $Gu^{2,3}$, Huiran Yang², Bohan Zhang^{2,4}, Zhitao Zhou², Liuyang Sun^{2,3}, Meng Li^{2,3}, Xiaoling Wei^{2,3} and Tiger H. Tao^{1,2,3,4,5,6}

¹Guangdong Institute of Intelligence Science and Technology, CHINA, ²Chinese Academy of Sciences, CHINA, ³University of Chinese Academy of Sciences, CHINA, ⁴ShanghaiTech University, CHINA, ⁵Neuroxess Co., Ltd. (Jiangxi), CHINA, and ⁶Tiangiao and Chrissy Chen Institute for Translational Research, CHINA

a - Bio and Medical MEMS

MEMS & BioMEMS for Fighting COVID-19 & Future Pandemic

W314-a A MICROFLUIDIC BIOSENSOR FOR RAPID DETECTION OF COVID-19

Sura A. Muhsin¹, Ying He¹, Muthana Al-Amidie¹, Karen Sergovia¹, Amjed Abdullah¹, Yang Wang¹, Omar Alkorjia¹, Robert A. Hulsey², Gary L. Hunter², Zeynep Erdal², Ryan J. Pletka², George S. Hyleme², Xiu-Feng Wan^{1,2}, and Mahmoud Almasri¹

¹University of Missouri, USA and ²Black and Veatch, KANSAS

M115-a A LOOP-MEDIATED ISOTHERMAL AMPLIFICATION (LAMP)-BASED POINT-OF-CARE SYSTEM FOR RAPID ON-SITE CLINICAL DETECTION OF SARS-COV-2 VIRUSES

Trieu Nguyen¹, Aaydha Chidambara Vinayaka¹, Van Ngoc Huynh¹, Quyen Than Linh¹, Sune Zoëga Andreasen¹, Mohsen Golabi¹, Dang Duong Bang¹, Jens Kjølseth Møller², and Anders Wolff¹

¹ Technical University of Denmark, DENMARK and ² University Hospital of Southern Denmark, DENMARK

a - Bio and Medical MEMS

MEMS & BioMEMS for Healthcare and Public Health

T215-a A SOLAR-DRIVEN WEARABLE MULTIPLEXED BIO-SENSING SYSTEM FOR NONINVASIVE HEALTHCARE MONITORING IN SWEAT

Jujhar Singh, Bianca Ning, Paul Lee, and Lin Liu Seattle Pacific University, USA

W315-a HIGH-THROUGHPUT MASS MEASUREMENT OF SINGLE BACTERIAL CELLS BY SILICON NITRIDE MEMBRANE RESONATORS

Adrián Sanz-Jiménez¹, Oscar Malvar¹, Jose J. Ruz¹, Sergio García-López¹, Priscila M. Kosaka¹, Eduardo Gil-Santos¹, Álvaro Cano¹, Dimitris Papanastasiou², Diamantis Kounadis², Elias Panagiotopoulos², Jesús Mingorance³, María Rodríguez-Tejedor³, Álvaro San Paulo¹, Montserrat Calleja¹, and Javier Tamayo¹ Instituto de Micro y Nanotecnología, SPAIN, ²Fasmatech Science & Technology, Lefkippos TESPA, Demokritos NCSR, Patriarchou Gregoriou & Neapoleos, GREECE, and ³Hospital Universitario La Paz, Madrid, SPAIN

M116-a MICROFABRICATED ISOTHERMAL EG-FET SENSOR FOR LAMP MEDIATED CRISPR/CAS12A DETECTION OF HEPATITIS C VIRUS

Hsin-Ying Ho, Wei-Sin Kao, Piyush Deval, Ling-Shan Yu, and Che-Hsin Lin *National Sun Yat-sen Universit, TAIWAN*

T216-a SMART ELECTRODE ARRAY FOR COCHLEAR IMPLANTS

Ahmad Itawi¹, Sofiane Ghenna¹, Guillaume Tourrel², Sébastien Grondel¹, Cedric Plesse³, Tran Minh Giao Nguyen³, Frédéric Vidal³, Yinoussa Adagolodjo⁴, Lingxiao Xun⁴, Gang Zheng⁴, Alexandre Kruszewski⁴, Christian Duriez⁴, and Eric Cattan¹

¹University Polytechnique Hauts-de-France, FRANCE, ²Oticon Medical, FRANCE,

³CY Cergy Paris Université, FRANCE, and ⁴University of Lille, FRANCE

a - Bio and Medical MEMS

Tissue Engineering

W316-a A THREE-DIMENSIONAL ARTIFICIAL INTESTINAL TISSUE WITH A CRYPT-LIKE INNER SURFACE

Shuma Tanaka¹, Shun Itai², and Hiroaki Onoe¹

¹Keio University, JAPAN and ²Tohoku University, JAPAN

M117-a TISSUE-ENGINEERED PENNATE MUSCLES ON A CHIP

Motoki Ito, Yuya Morimoto, and Shoji Takeuchi *University of Tokyo, JAPAN*

T217-a WEIGHT TRAINING DEVICE TO PROMOTE MATURATION IN SKELETAL MUSCLE TISSUES

Kentaro Motoi, Byeongwook Jo, Yuya Morimoto, and Shoji Takeuchi *University of Tokyo, JAPAN*

a - Bio and Medical MEMS

Other Bio and Medical MEMS

W317-a MICROSYSTEM VIBRATING MESH ATOMIZER WITH INTEGRATED MICROHEATER FOR HIGH VISCOSITY LIQUID AEROSOL GENERATION

Pallavi Sharma, Irma Rocio Vazquez, and Nathan Jackson *University of New Mexico, USA*

M118-a SCALABLE MODULAR MEASUREMENT SYSTEM FOR CONTINUOUS BLOOD MONITORING WITH PIEZOELECTRIC MEMS RESONATORS

Michael Schneider¹, Bernhard Kößl¹, Suresh Alasatri¹, Ingrid A.M. Magnet², and Ulrich Schmid¹ *TU Wien, AUSTRIA and ²Medical University of Vienna, AUSTRIA*

T218-a SILICON COMPATIBLE PROCESS TO INTEGRATE IMPEDANCE CYTOMETRY WITH MECHANICAL CHARACTERIZATION

Quentin Rezard¹, Faruk Azam Shaik^{1,2}, Jean Claude Gerbedoen^{1,2}, Fabrizio Cleri¹, Dominique Collard^{1,2}, Chann Lagadec¹, and Mehmet C. Tarhan^{1,2}

¹University of Lille, FRANCE and ²University of Tokyo, Lille, FRANCE

W318-a SORTING OF EXTRACELLULAR VESICLES BY USING OPTICALLY-INDUCED DIELECTROPHORESIS ON AN INTEGRATED MICROFLUIDIC CHIP

Wei-Jen Soong, Chih-Hung Wang, Yi-Sin Chen, Chihchen Chen, and Gwo-Bin Lee *National Tsing Hua University, TAIWAN*

b - Emerging Technologies and New Opportunities for MEMS/NEMS Internet of Things (IoT) with MEMS/NEMS

M119-b A REPROGRAMMABLE MEM SWITCH UTILIZING CONTROLLED CONTACT WELDING

Tsegereda K. Esatu, Hei Kam, Lars P. Tatum, Xiaoer Hu, Urmita Sikder, Sergio Almeida, Junqiao Wu, and Tsu-Jae King Liu *University of California, Berkeley, USA*

T219-b MICROMECHANICAL RSSI BASED ON FORCE INTERACTION DERIVED TAPPING BANDWIDTH VARIATION IN VIBRO-IMPACT RESONATORS

Yi-Hsuan Huang, Hong-Sen Zheng, Chun-Pu Tsai, and Wei-Chang Li *National Taiwan University, TAIWAN*

W319-b WAKE-UP IOT WIRELESS SENSING NODE BASED ON A LOW-G THRESHOLD MEMS INERTIAL SWITCH WITH RELIABLE CONTACTS

Sagnik Ghosh¹, Duan Jian Goh¹, Yul Koh¹, Jaibir Sharma¹, Wei Da Toh¹, Weiguo Chen¹, Yao Zhang¹, Eldwin Ng¹, Amit Lal², and Joshua E.-Y. Lee¹

¹Agency for Science, Technology and Research (A*STAR), SINGAPORE and ²Cornell University, USA

b - Emerging Technologies and New Opportunities for MEMS/NEMS Machine Learning (ML) & Artificial Intelligence (AI) Enhanced MEMS/NEMS Design, Manufacturing, and Applications

M120-b ARTIFICIAL INTELLIGENCE (AI)-ENHANCED E-SKIN WITH ARTIFICIAL SYNAPSE SENSORY OUTPUT FOR HUMANOID ROBOTIC FINGER OF MULTIMODAL PERCEPTION

Xinge Guo^{1,2} and Chengkuo Lee¹

¹National University of Singapore, SINGAPORE and

²Agency for Science, Technology and Research (A*STAR), SINGAPORE

T220-b MULTI-MEMS DIFFERENTIAL PRESSURE SENSOR ELEMENTS-BASED AIRFLOW SENSOR WITH NEURAL NETWORK MODEL

Kotaro Haneda, Kenei Matsudaira, and Hidetoshi Takahashi *Keio University, JAPAN*

W320-b TRIAL-AND-ERROR LEARNING FOR MEMS STRUCTURAL DESIGN ENABLED BY DEEP REINFORCEMENT LEARNING

Fanping Sui¹, Wei Yue¹, Ziqi Zhang², Ruiqi Guo¹, and Liwei Lin^{1,2}

¹University of California, Berkeley, USA and ²TSinghua University, CHINA

b - Emerging Technologies and New Opportunities for MEMS/NEMS New Computing Devices and Systems with MEMS/NEMS

M121-b FULLY MICROELECTROMECHANICAL NON-VOLATILE MEMORY CELL.

Elliott Worsey, Mukesh K. Kulsreshath, Qi Tang, and Dinesh Pamunuwa *University of Bristol, UK*

T221-b NONVOLATILE STATE CONFIGURATION OF NANO-WATT PARAMETRIC ISING SPINS THROUGH FERROELECTRIC HAFNIUM ZIRCONIUM OXIDE MEMS VARACTORS

Nicolas Casilli¹, Onurcan Kaya¹, Tahmid Kaisar², Benyamin Davaji¹,

Philip X.-L. Feng², and Cristian Cassella¹

¹Northeastern University, USA and ²University of Florida, USA

W321-b PHYSICAL RESERVOIR COMPUTING USING NONLINEAR MEMS RESONATOR HAVING HIGH MEMORY CAPACITY AT "EDGE OF CHAOS"

Hiroki Takemura, Takahiro Mizumoto, Amit Banerjee, Jun Hirotani, and Toshiyuki Tsuchiya *Kyoto University, JAPAN*

M122-b PROGRAMMABLE FERROELECTRIC HZO NEMS MECHANICAL MULTIPLIER FOR INMEMORY COMPUTING

Shubham Jadhav, Ved Gund, and Amit Lal Cornell University, USA

T222-b STORING MEMS INTERFACES WITHOUT ELECTRICAL AUXILIARY ENERGY FOR LONG-TIME MONITORING

Martin Hoffmann¹, Philip Schmitt¹, Steffen Wittemeier³, Falk Schaller², Alexey Shaporin³, Chris Stöckel^{2,3}, Volker Geneiß³, Roman Forke³, Christian Hedayat³, Ulrich Hilleringmann⁴, Harald Kuhn^{2,3}, and Sven Zimmermann^{2,3}

¹Ruhr-Universität Bochum, GERMANY, ²Chemnitz University of Technology, GERMANY, ³Fraunhofer Institute for Electronic Nano Systems ENAS, GERMANY, and ⁴University of Paderborn, GERMANY

b - Emerging Technologies and New Opportunities for MEMS/NEMS Nonlinear Dynamics in MEMS/NEMS

W322-b A NEW FINDING ON NONLINEAR DAMPING AND STIFFNESS OF FLEXURAL MODE CAPACITIVE MEMS RESONATORS

Hung-Yu Chen, Ming-Huang Li, and Sheng-Shian Li National Tsing Hua University, TAIWAN

M123-b EXPLOITING PARAMETRIC INSTABILITY IN BISTABLE MEMS ACTUATORS

Daniel Platz, Johannes Fabian, Elisabeth Samm, Mahdi Mortada, Michael Schneider, and Ulrich Schmid TU Wien, AUSTRIA

T223-b FIRST PROTOTYPE OF POLYMER MICROMACHINED FLAPPING WING NANO AIR VEHICLE

Rashmikant, Ryotaro Suetsugu, Minato Onishi, and Daisuke Ishihara Kyushu Institute of Technology, JAPAN

W323-b ITERATIVE LEARNING CONTROL FOR QUASI-STATIC MEMS MIRROR WITH SWITCHING OPERATION

Matthias Macho¹, Han Woong Yoo¹, Richard Schroedter², and Georg Schitter¹ *TU Wien, AUSTRIA and ²TU Dresden, GERMANY*

b - Emerging Technologies and New Opportunities for MEMS/NEMS Quantum Devices and Systems with MEMS/NEMS

M124-b M_Z ATOMIC MAGNETOMETER USING A 3D MEMS GLASS ALKALI VAPOR CELL WITH VERTICAL SIDEWALLS

Jin Zhang, Jianfeng Zhang, Wenqi Li, Ziji Wang, and Jintang Shang Southeast University, CHINA

T224-b ON-CHIP HEATING NOISE SUPPRESSION OF 3D CHIP-SCALE ATOMIC MAGNETOMETER USING SINGLE-LAYER SHIFTED HEATER

Ziji Wang, Junming Wu, Jin Zhang, and Jintang Shang Southeast University, CHINA

c - Industry MEMS and Advancing MEMS for Products and Sustainability Barriers to Commercialization & Research Needs for Future Products

W324-c LABOR-SAVING PLATFORM FOR CHARACTERIZATION OF MEMBRANE PROTEINS BY AUTOMATED MONITORING AND DATA REPORTING

Kazuto Ogishi¹, Toshihisa Osaki², Yuya Morimoto¹, and Shoji Takeuchi^{1,2}

¹University of Tokyo, JAPAN and ²Kanagawa Institute of Industrial Science and Technology, JAPAN

c - Industry MEMS and Advancing MEMS for Products and Sustainability MEMS Packaging Techniques

M125-c MODELLING IMPACT OF VISCOELASTIC PROPERTIES OF DIE-ATTACH MATERIAL ON THE BIAS RESPONSE OF RESONANT INERTIAL SENSORS

Theo Miani¹, Lokesh Gurung¹, Guillermo Sobreviela-Falces¹, Douglas Young¹, Colin Baker¹, and Ashwin A. Seshia²

¹Silicon Microgravity Ltd., UK and ²University of Cambridge, UK

c - Industry MEMS and Advancing MEMS for Products and Sustainability MEMS/NEMS - CMOS Integration

T225-c CMOS-EMBEDDED 3D MICRO/NANOFLUIDICS EMPLOYING TOP-DOWN BEOL SINGLE-STEP WET-ETCHING TECHNIOUE

Wei-Yang Weng, Hung-Yu Hou, Yueh-Jung Chao, Shwu-Jen Liaw, and Jun-Chau Chien *National Taiwan University, TAIWAN*

W325-c IMPLEMENTATION OF A MONOLITHIC SOC ENVIRONMENTAL SENSING HUB USING CMOS-MEMS TECHNIQUE

Ya-Chu Lee¹, Tung-Lin Chien¹, Chi-Te Fang¹, Yuanyuan Huang¹, Wei-Lun Sung², Yen-Chang Chu², Rongshun Chen¹, and Weileun Fang¹

¹National Tsing Hua University, TAIWAN and ²PixArt Imaging Inc., TAIWAN

M126-c MONOLITHICALLY AND VERTICALLY INTEGRATED ENVIRONMENTAL SENSING HUB WITH NOVEL AIR-BASED HUMIDITY SENSOR DESIGN

Tung-Lin Chien, Yuanyuan Huang, Fuchi Shih, and Weileun Fang National Tsing Hua University, TAIWAN

c - Industry MEMS and Advancing MEMS for Products and Sustainability New MEMS System Design and Integration Approaches

T226-c A SELF-CORRECTED, SELF-CLEANED MEMS AND SUITABLE FOR ADVANCED FOUNDRY MULTI-PROJECT WAFER (MPW)

Sushil Kumar, Dhairya Singh Arya, Manu Garg, and Pushpapraj Singh Indian Institute of Technology, New-Delhi, INDIA

W326-c MONOLITHIC INTEGRATION OF HUMIDITY/FLOW/TEMPERATURE SENSORS AS ENVIRONMENT SENSING HUB FOR APPARENT-TEMPERATURE DETECTION

Yu-Hsuan Li, Tung-Lin Chien, Fuchi Shih, Yuanyuan Huang, and Weileun Fang National Tsing Hua University, TAIWAN

M127-c PIEZORESISTIVE PRESSURE SENSOR WITH MONOLITHICALLY INTEGRATED AMPLIFIER BASED ON METAL-OXIDE TRANSISTORS

Runxiao Shi¹, Dequan Lin¹, Kevin Chau^{1,2}, and Man Wang¹

¹Hong Kong University of Science and Technology, HONG KONG and

²Chinese Academy of Sciences, CHINA

d - Materials, Fabrication and Packaging for Generic MEMS and NEMS Advancement in Conventional Materials for MEMS & NEMS

T227-d A PERFORMANCE ENHANCEMENT METHOD FOR THERMOPILE SENSORS USING A CHIP PROBE TEST SYSTEM

Meng Shi^{1,2}, Mao Li^{1,2}, Yue Ni³, Chenchen Zhang¹, Na Zhou^{1,2}, Haiyang Mao^{1,2}, and Chengjun Huang^{1,2}
¹Chinese Academy of Sciences, CHINA, ²University of Chinese Academy of Sciences, CHINA, and
³Jiangsu Hinovaic Technologies Co., Ltd, CHINA

W327-d CHARACTERIZING INDUCTIVELY-COUPLED-PLASMA ETCHING OF SINGLE CRYSTALLINE LITHIUM TANTALATE FOR MICRO-ACOUSTIC APPLICATIONS

Yasaman Majd, Jorge Manrique Castro, Hakhamanesh Mansoorzare, and Reza Abdolvand *University of Central Florida, USA*

M128-d ROBUST POLYCRYSTALLINE 3C-SIC-ON-SI HETEROSTRUCTURES WITH LOW CTE MISMATCH UP TO 900 °C FOR MEMS

Philipp Moll, Georg Pfusterschmied, and Ulrich Schmid *TU Wien, AUSTRIA*

d - Materials, Fabrication and Packaging for Generic MEMS and NEMS Digital Micromanufacturing

T228-d A 3D PRINTED FUNCTIONAL MEMS ACCELEROMETER

Simone Pagliano¹, David E. Marschner¹, Damien Maillard², Nils Ehrmann³, Göran Stemme¹, Stefan Braun³, Luis Guillermo Villanueva², and Frank Niklaus¹

¹KTH Royal Institute of Technology, SWEDEN, ²École Polytechnique Fédérale de Lausanne (EPFL), SWITZERLAND, and ³Hochschule Kaiserslautern, GERMANY

W328-d A FULLY 3D PRINTED METHOD FOR MONOLITHIC INTEGRATION OF AN ACCELEROMETER AND A FORCE SENSOR

Guandong Liu^{1,2}, Changhai Wang¹, Kexin Wang¹, Zhili Jia³, Ruiqi Luo², and Wei Ma^{2,4}

¹Heriot-Watt University, UK, ²Zhejiang Lab, CHINA, ³National Institute of Metrology, CHINA, and ⁴Zhejiang University, CHINA

d - Materials, Fabrication and Packaging for Generic MEMS and NEMS Generic MEMS & NEMS Manufacturing Techniques

M129-d CHARACTERIZATION OF VAPOR HF SACRIFICIAL ETCHING THROUGH SUBMICRON RELASE HOLES FOR WAFER-LEVEL VACUUM PACKAGING BASED ON SILICON MIGRATION SEAL

Tianjiao Gong¹, Yukio Suzuki¹, Muhammad J. Khan¹, Karla Hiller², and Shuji Tanaka¹ Tohoku University, JAPAN and ²Fraunhofer Institute for Electronic Nano Systems, GERMANY

T229-d DAMAGE PROFILE MODELING AND EXPERIMENT OF SILICON CARBIDE SUBSTRATES IN MICRO-NANO STRUCTURE FABRICATED BY HELIUM FOCUSED ION BEAM

Shupeng Gao, Xi Chen, Qianhuang Chen, Qi Li, and Yan Xing Southeast University, CHINA

W329-d LIQUID-IMMERSION INCLINED-ROTATED UV LITHOGRAPHY FOR MICRO SUCTION CUP ARRAY

Gakuto Kagawa and Hidetoshi Takahashi Keio University, JAPAN

d - Materials, Fabrication and Packaging for Generic MEMS and NEMS New & Emerging Materials for MEMS/NEMS

M130-d PARAMETRIC AMPLIFICATION AND PHONONIC FREQUENCY COMB GENERATION IN MoS2 NANOELECTROMECHANICAL RESONATORS

S M Enamul Hoque Yousuf¹, Yunong Wang¹, Jaesung Lee¹, Steven W. Shaw^{2,3}, and Philip X.-L. Feng¹ University of Florida, USA, ²Florida Institute of Technology, USA, and ³Michigan State University, USA

T230-d PARYLENE-N AS A HIGH TEMPERATURE THIN FILM PIEZOELECTRIC MATERIAL

Nathan Jackson and Deepak Kunwar *University of New Mexico, USA*

W330-d SILICON CARBIDE-ON-INSULATOR THERMAL-PIEZORESISTIVE RESONATOR FOR HARSH ENVIRONMENT APPLICATION

Baoyun Sun^{1,2}, Jiarui Mo¹, Hemin Zhang³, Henk W. van Zeijl¹, Willem D. van Driel¹, and Guoqi Zhang¹ Delft University of Technology, NETHERLANDS, ²China University of Petroleum, CHINA, and ³KU Leuven, BELGIUM

M131-d SPIN COATING OF HIGHLY ALIGNED AGCN MICROWIRES EPITAXIALLY GROWN ON 2D MATERIALS

Jimin Ham, Jaemook Lim, Joowon Lim, Gunyoung Jang, Sueng Yoon Lee, Dohyun Lim, Sukjoon Hong, and Won Chul Lee *Hanyang Universit, Ansan, KOREA*

T231-d SUSPENDED TWO-DIMENSIONAL MATERIAL MEMBRANES FOR SENSOR APPLICATIONS FABRICATED WITH A HIGH-YIELD TRANSFER PROCESS

Sebastian Lukas¹, Ines Kraiem^{1,2}, Maximilian Prechtl³, Oliver Hartwig³, Annika Grundmann¹, Holger Kalisch¹, Satender Kataria¹, Michael Heuken^{1,4}, Andrei Vescan¹, Georg S. Duesberg³, and Max C. Lemme^{1,2}
¹RWTH Aachen University, GERMANY, ²AMO GmbH, GERMANY,
³University of the Bundeswehr Munich, GERMANY, and ⁴AIXTRON SE, GERMANY

W331-d TCF-IMPROVED SH₀ MODE ACOUSTIC RESONATORS BASED ON 30°YX-LINBO₃/SIO₂ MEMBRANE

Shuxian Wu¹, Zonglin Wu¹, Hangyu Qian¹, Feihong Bao¹, Gongbin Tang², Feng Xu¹, and Jie Zou¹

¹Fudan University, CHINA and ²Shandong University, CHINA

M132-d WAFER SCALE MULTILAYER GRAPHENE BASED BRAIN PROBES BY SPIN-SPRAYING METHODS FOR MAGNETIC RESONANCE IMAGING

Kejun Tu, Zhejun Guo, Mengfei Xu, Bin Yang, and Jingquan Liu *Shanghai Jiao Tong University, CHINA*

d - Materials, Fabrication and Packaging for Generic MEMS and NEMS New Fabrication Processes for Making MEMS/NEMS

T232-d 3D SELF-ALIGNED FABRICATION OF SUSPENDED NANOWIRES BY CRYSTALLOGRAPHIC NANOLITHOGRAPHY

Erwin J.W. Berenschot, Yasser Pordeli, Lucas J. Kooijman, Yves L. Janssens, Roald M. Tiggelaar, and Niels R. Tas *University of Twente, NETHERLANDS*

W332-d A SIMPLE PROCESS FOR THE FABRICATION OF PARALLEL-PLATE ELECTROSTATIC MEMS RESONATORS BY GOLD THERMOCOMPRESSION BONDING

Dolores Manrique Juarez¹, Fabrice Mathieu¹, Guillaume Libaude¹, David Bourrier¹, Samuel Charlot¹, Laurent Mazenq¹, Véronique Conédéra¹, Ludovic Salvagnac¹, Isabelle Dufour², Liviu Nicu¹, and Thierry Leïchlé^{1,3}

¹LAAS-CNRS, FRANCE, ²Université de Bordeaux, IMS UMR-CNRS, FRANCE, and ³Georgia Tech, USA

M133-d ELECTROMECHANICALLY STABLE INTERCONNECTION BETWEEN LIG AND THICK DAM-SHAPED METALLIC ELECTRODE VIA STORED AG MICROPARTICLE SOLUTION

Saeyoung Park, Yoo-Kyum Shin, and Min-Ho Seo *Pusan National University, KOREA*

T233-d FREE-STANDING MEMBRANES WITH SELF-ASSEMBLED NANOPORE ARRAYS FOR TEM OBSERVATION OF LIQUID SAMPLES

Joowon Lim¹, Jimin Ham¹, Sungho Jeon¹, Yuna Bae^{2,3}, Minho Kang^{2,3}, Sueng Yoon Lee¹, Jungwon Park^{2,3}, and Won Chul Lee¹

¹Hanyang University, KOREA, ²Seoul National University, KOREA, and ³Institute of Basic Science (IBS), KOREA

W333-d NONPLANAR NANOFABRICATION VIA INTERFACE ENGINEERING

Sarah O. Spector, Peter F. Satterthwaite, and Farnaz Niroui *Massachusetts Institute of Technology, USA*

M134-d WAFER-LEVEL FABRICATION OF CONFORMAL SUB 10-NM NANOGAPS

Sayali Tope, Seungbeom Noh, and Hanseup Kim *University of Utah, USA*

d - Materials, Fabrication and Packaging for Generic MEMS and NEMS Packaging & Assembly

T234-d MEMS RESONATOR VACUUM-SEALED BY SILICON MIGRATION AND HYDROGEN OUTDIFFUSION

Muhammad Jehanzeb Khan, Yukio Suzuki, Tianjiao Gong, Takashiro Tsukamoto, and Shuji Tanaka *Tohoku University, JAPAN*

W334-d MEMS THIN-FILM VACUUM PACKAGE UTILIZING GLOW DISCHARGE GETTER

Vikram Maharshi, Manjeet Kumar, Ajay Agarwal, and Bhaskar Mitra Indian Institute of Technology, Jodhpur, INDIA

e – MEMS Actuators and PowerMEMS Actuator Components & Systems

M135-e LNOI THIN-FILM DUAL-AXIS RESONANT MICRO-MIRROR WITH E16 TORSIONAL ACTUATION

Yaoqing Lu^{1,2,3}, Kangfu Liu^{1,2,3}, Yuxi Wang^{1,2,3}, Ran Nie¹, and Tao Wu^{1,2,3,4}
¹ShanghaiTech University, CHINA, ²Chinese Academy of Sciences, CHINA,
³University of Chinese Academy of Sciences, CHINA, and
⁴Shanghai Engineering Research Center of Energy Efficient and Custom AI IC, CHINA

T235-e A PIEZOELECTRIC MEMS SPEAKER WITH STRETCHABLE FILM SEALING

Linbing Xu, Mingchao Sun, Menglun Zhang, Chengze Liu, Xiaopeng Yang, and Wei Pang *Tianjin University, CHINA*

W335-e BROADBAND MEMS SPEAKER BY SINGLE-WAY MULTI-RESONANCE ARRAY WITH ACOUSTIC DAMPING TUNING: A PROOF OF CONCEPT

Mingchao Sun, Menglun Zhang, Chengze Liu, and Wei Pang *Tianjin University, CHINA*

M136-e IONIC LIQUID ELECTROSPRAY THRUSTER WITH TWO-STAGE ELECTRODES ON GLASS SUBSTRATE

Akane Nishimura¹, Yoshinori Takao², Toshiyuki Tsuchiya¹, and Yoshinori Takao²
¹Kyoto University, JAPAN and ²Yokohama National University, JAPAN

W336-e MONOLITHIC INTEGRATION OF PZT ACTUATION UNITS OF VARIOUS ACTIVATED RESONANCES FOR FULL-RANGE MEMS SPEAKER ARRAY

Hsu-Hsiang Cheng¹, Sung-Cheng Lo¹, Yu-Chen Chen¹, Ming-Ching Cheng¹,

Ting-Chou Wei¹, Mingching Wu², and Weileun Fang¹

¹National Tsing Hua University, TAIWAN and ²CoretronicMEMS Co., Ltd., TAIWAN

M137-e PULL-IN VOLTAGE REDUCTION IN ELECTROSTATIC AIRGAP ACTUATOR USING 12 NM-ULTRATHIN INTERNAL DIELECTRIC TRANSDUCTION

Satish K. Verma and Bhaskar Mitra

Indian Institute of Technology, New Delhi, INDIA

e – MEMS Actuators and PowerMEMS Energy Harvesting Materials, Structures, and Transducers

T237-e A REVERSE ELECTROWETTING-ON-DIELECTRIC (REWOD) ENERGY HARVESTER USING NONWETTING GALLIUM COATED ELECTRODE AND ULTRATHIN GALLIUM OXIDE SHELL AS DIELECTRIC LAYER

Jinwon Jeong, Bokyung Suh, and Jeong Bong (JB) Lee *University of Texas at Dallas, USA*

W337-e ASYMMETRIC QUAD LEG ORTHOPLANAR SPRING FOR WIDEBAND PIEZOELECTRIC MICRO ENERGY HARVESTING

Ali Mohammadi, Shamin Sadrafshari, Alborz Shokrani, and Chris R. Bowen *University of Bath, UK*

M138-e EVALUATION OF THERMOELECTRIC PROPERTIES OF MONOLITHICALLY-INTEGRATED CORE-SHELL SI NANOWIRE BRIDGES

Akio Uesugi, Shusuke Nishiyori, Koji Sugano, and Yoshitada Isono *Kobe University, JAPAN*

T238-e GLAZE TILE-INSPIRED LIQUID-SOLID POWER GENERATOR FOR CONTINUOUS WATER FLOW ENERGY HARVESTING

Dezhi Nie¹, Boming Lyu¹, Yongbo Hu¹, Jian Zhang¹, Yongqing Fu², Honglong Chang¹, and Kai Tao¹ Northwestern Polytechnical University, CHINA and ²Northumbria University, UK

W338-e MEMS CANTILEVERED ENERGY HARVESTER WITH TAPERED THICKNESS FOR STRESS CONTROL

Takahito Yokota, Kensuke Kanda, Takayuki Fujita, and Kazusuke Maenaka *University of Hyogo, JAPAN*

M139-e TAPERED HELMHOLTZ RESONATOR WIND ENERGY HARVESTER DRIVEN BY AEROACOUSTICS

Chen Hua, Liyun Zhen, Jingquan Liu, and Bin Yang Shanghai Jiao Tong University, CHINA

e – MEMS Actuators and PowerMEMS Manufacturing for Actuators & Power MEMS

T239-e ANDROMEDA: A FLEXIBLE MEMS TECHNOLOGY PLATFORM FOR A VARIETY OF PIEZOELECTRICALLY ACTUACTED MICROMIRRORS

Irene Martini, Anna Alessandri, Marta Carminati, Roberto Carminati, Paolo Ferrarini, Daniela A.L. Gatti, Riccardo Gianola, Borka Lazarova, Carla M. Lazzari, Andrea Nomellini, Laura Oggioni, Claudia Pedrini, Carlo L. Prelini, Riccardo Tacchini, and Michele Vimercati *STMicroelectronis, ITALY*

W339-e DESIGN OF BUTTERFLY PLATE PIEZOELECTRIC ACTUATOR WITH DUAL DRIVING ELECTRODES FOR MEMS MICRO-MIRROR

Si-Han Chen¹, Shih-Chi Liu¹, Hao-Chien Cheng¹, Hung-Yu Lin¹,

Kai-Chih Liang², Mingching Wu², and Weileun Fang¹

¹National Tsing Hua University, TAIWAN and ²Coretronic MEMS Corporation, TAIWAN

M140-e FULLY-FLEXIBLE MICRO-SCALE ACTUATOR ARRAY WITH THE LIQUID-GAS PHASE CHANGE MATERIALS

Sangjun Sim, Kyubin Bae, and Jongbaeg Kim

School of Mechanical Engineering, Yonsei University, KOREA

e – MEMS Actuators and PowerMEMS Power MEMS Components & Systems

T240-e A NOVEL COMB DESIGN FOR ENHANCED POWER AND BANDWIDTH IN ELECTROSTATIC MEMS ENERGY CONVERTORS

Jinglun Li¹, Habilou Ouro-Koura¹, Hannah Arnow¹, Arian Nowbahari², Mathew Galarza¹, Meg Obispo¹, Xing Tong¹, Mehdi Azadmehr², Mona M. Hella¹, John A. Tichy¹, and Diana-Andra Borca-Tasciuc¹ Rensselaer Polytechnic Institute, USA and ²University of South-Eastern Norway, NORWAY

e – MEMS Actuators and PowerMEMS Self-Powered Devices and Microsystems

W340-e A HYBRID NANOGENERTOR-DRIVEN SELF-POWERED WEARABLE PERSPIRATION MONITORING SYSTEM

Md Abu Zahed, S M Sohel Rana, Md Sharifuzzaman, Seonghoon Jeong,

Gagan Bahadur Pradhan, Hye Su Song, and Jae Yeong Park

Kwangwoon University, KOREA

M141-e A MONOLITHIC INTEGRATED AND TRANSPARENT MICROSYSTEM CONSTRUCTED BY USING AMORPHOUS INGAZNO FILM

Bin Jia, Chao Zhang, and Xiaodong Huang

Southeast University, CHINA

T241-e FLOWING WATER ENABLES STEERABLE CHARGE DISTRIBUTION ON ELECTRET SURFACE

Boming Lyu¹, Jian Zhang¹, Yunjia Li², Yongqing Fu³, Honglong Chang¹, Weizheng Yuan¹, and Kai Tao¹ Northwestern Polytechnical University, CHINA, ²Xi'an Jiaotong University, CHINA, and ³University of Northumbria, UK

W341-e SELF-POWERED FLEXIBLE PIEZOELECTRET ARRAY FOR WEARABLE APPLICATIONS

Hao Yang^{1,2}, Rui M.R. Pinto¹, Pedro González¹, Alar Ainla¹,

Mohammadmahdi Faraji¹, and K.B. Vinayakumar¹

¹International Iberian Nanotechnology Laboratory, PORTUGAL and ²Xi'an Jiaotong University, CHINA

f - MEMS Physical and Chemical Sensors

Fluidic Sensors

M142-f A BULK-TYPE PRESSURE SENSOR WITH FULL-BRIDGE IMPLEMENTATION ENABLED BY STRESS-MODIFYING TRENCHES

Dequan Lin¹, Man Wong¹, and Kevin Chau^{1,2}

¹Hong Kong University of Science and Technology, CHINA, ²Chinese Academy of Science, CHINA

T242-f A CMOS COMPATIBLE MICRO PIRANI GAUGE WITH STRUCTURE OPTIMIZATION FOR PERFORMANCE ENHANCEMENT

Rui Jiao¹, Gai Yang², Ruoqin Wang¹, Yue Tang², Zhongyi Liu²,

Huikai Xie^{2,3}, Hongyu Yu¹, and Xiaoyi Wang^{2,3}

¹Hong Kong University of Science and Technology, HONG KONG, ²Beijing Institute of Technology, CHINA, and ³BIT Chongging Institute of Microelectronics and Microsystems, CHINA

W342-f A THERMAL AIRFLOW SENSOR BASED ON MN-CO-NI-O THIN FILM

Jie Wang, Yunfei Liu, Zhezheng Zhu, Chengchen Gao, Zhenchuan Yang, and Yilong Hao *Peking University, CHINA*

M143-f HIGHLY SENSITIVE WAVE HEIGHT SENSOR WITH MEMS PIEZORESISTIVE CANTILEVER AND WATERPROOF MEMBRANE

Takuto Hirayama and Hidetoshi Takahashi Keio University, JAPAN

T243-f MEMS CAPACITANCE DIAPHRAGM GAUGE WITH TWO SEALED REFERENCE CAVITIES

Xiaodong Han^{1,2}, Jingzhen Li³, Gang Li⁴, and Yongjian Feng¹

¹Xiamen University, CHINA, ²University of Twente, NETHERLANDS,

³Beijing University of Technology, CHINA, and ⁴Lanzhou Institute of Physics, CHINA

W343-f TOWARDS A GAS INDEPENDENT THERMAL FLOW METER

Shirin Azadi Keari¹, Remco J. Wiegerink¹, Remco G.P. Sanders¹, and Joost C. Lotters^{1,2}
¹University of Twente, NETHERLANDS and ²Bronkhorst High-Tech BV, NETHERLANDS

f - MEMS Physical and Chemical Sensors

Force & Displacement Sensors

M144-f AN INTEGRATED MEMS DEVICE FOR *IN-SITU* FOUR-PROBE ELECTRO-MECHANICAL CHARACTERIZATION OF PT NANOBEAM

Yuheng Huang, Meng Nie, Binghui Li, Kuibo Yin, and Litao Sun Southeast University, CHINA

T244-f FINGERLIKE TACTILE TEXTURE INTEGRATED SENSOR WITH COLD AND WARM SENSATIONS OF SUB-MM SPATIAL RESOLUTION

Nachi Mise, Mitsuki Kozasa, Kyohei Terao, Fusao Shimokawa, and Hidekuni Takao *Kagawa University, JAPAN*

W344-f MODIFIED BEAM STRUCTURES FOR IMPROVED RESONANT SENSING

Erfan Ghaderi and Behraad Bahreyni Simon Fraser University, CANADA

M145-f OCCLUSAL PAPER-BASED FLEXIBLE PRESSURE SENSOR FOR IN SITU MEASURING ORAL OCCLUSAL FORCE

Wenduo Wang, Xin Zhang, Ning Zhao, Jingquan Liu, and Bin Yang Shanghai Jiao Tong University, CHINA

T245-f SUCTION CUP ARRAY WORKING ALSO AS TACTILE SENSOR TO DETECT CUPS DEFORMATION USING KCF AND CNN

Toshihiro Shiratori, Jinya Sakamoto, Yuki Kumokita, Masato Suzuki, Tomokazu Takahashi, and Seiji Aoyagi *Kansai University, JAPAN*

W345-f VERTICAL INTEGRATION OF FORCE TRANSMISSION STRUCTURE ON CAPACITIVE CMOS-MEMS TACTILE FORCE SENSOR FOR SENSITIVITY IMPROVEMENT

Yuanyuan Huang, Yen-Lin Chen, Shihwei Lin, Fuchi Shih, Zihsong Hu, and Weileun Fang *National Tsing Hua University, TAIWAN*

f - MEMS Physical and Chemical Sensors

Gas & Chemical Sensors

1-OCTADECANETHIOL SAM ON CMOS-MEMS GOLD PLATED RESONATOR VIA DIP-CAST M146-f FOR VOCs SENSING

Rafel Perelló-Roig^{1,2}, Jaume Verd^{1,2}, Sebastià Bota^{1,2}, Bartomeu Soberats¹, Antonio Costa¹, and Jaume Segura^{1,2}

¹University of the Balearic Islands, SPAIN and ²Health Research Institute of the Balearic Islands, SPAIN

APPLICATION OF DEEP LEARNING NETWORK FOR HUMIDITY COMPENSATION OF T246-f SEMICONDUCTOR METAL OXIDE GAS SENSORS

Mingu Kang, Incheol Cho, and Inkyu Park

Korea Advanced Institute of Science and Technology (KAIST), KOREA

DEVELOPMENT OF MONOLITHIC MICRO-LED GAS SENSOR BASED W346-f E-NOSE SYSTEM FOR REAL-TIME, SELECTIVE GAS PREDICTION

Kichul Lee, Mingu Kang, and Inkyu Park

Korea Advanced Institute of Science and Technology (KAIST), KOREA

ELECTRONIC-NOSE: AN ARRAY OF 16 MOS-GAS SENSORS INTEGRATED WITH M147-f TEMPERATURE AND MOISTURE SENSING CAPABILITIES

Xiawei Yue^{1,2}, Shuai Wei^{1,2}, Pingping Zhang³, Zhitao Zhou¹, Tiger Tao^{1,2,4,5,6}, and Nan Qin¹

¹Chinese Academy of Sciences (CAS), CHINA, ²University of Chinese Academy of Sciences, CHINA,

³Suzhou Huiwen Nanotechnology Co. Ltd., CHINA, ⁴ShanghaiTech University, CHINA, ⁵Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, CHINA and ⁶Neuroxess Co., Ltd. (Jiangxi), CHINA

ENHANCEMENT OF SENSITIVITY IN PHOTONIC CRYSTAL BASED CHEMICAL SENSOR T247-f USING CHEMO-MECHANICAL BILAYER EFFECT

Seyeon Lee¹, Naik T. Banabathi¹, Dongwon Kang³, Sookyung Kang²,

Kyungsuk Cho², Jungwook Kim¹, and Jungyul Park¹

¹Sogang University, KOREA, ²Iwha University, KOREA, and ³University of California, Los Angeles, USA

METAL ION RECOGNITION SENSOR BASED ON RESISTANCE SWITCHING EFFECT W347-f

Tian Kang, Yusa Chen, Guanzhou Lin, Shengxiao Jin,

Liye Li, Hongshun Sun, Senyong Hu, and Wengang Wu

Peking University, CHINA

M148-f MULTI-HOTSPOT MID-IR NANOANTENNAS WITH MATCHED LOSS AND HIGH-INTENSITY NEAR-FIELD FOR SUB-PPM-LEVEL GAS DETECTION

Hong Zhou, Zhihao Ren, Cheng Xu, Liangge Xu, Xinge Guo, and Chengkuo Lee National University of Singapore, SINGAPORE

PALLADIUM BASED MEMS HYDROGEN SENSORS T248-f

Max Hoffmann¹, Marion Wienecke¹, Maren Lengert², Michael H. Weidner², and Jan Heeg² ¹Hochschule Wismar, Institut für Oberflächen- und Dünnschichttechnik, GERMANY and ²Materion GmbH, GERMANY

W348-f SELECTIVE DISCRIMINATION OF PPB-LEVEL VOCS USING MOS GAS SENSOR IN PULSE-HEATING MODE WITH THE MODIFIED HILL'S MODEL

Gaoqiang Niu, Yi Zhuang, Yushen Hu, Zong Liu, and Fei Wang Southern University of Science and Technology, CHINA

THERMAL CONDUCTIVITY DETECTOR (TCD)-TYPE GAS SENSOR BASED ON THE M149-f SUSPENDED 1D NANOHEATER FOR IOT APPLICATIONS

Wootaek Cho, Jong-Hyun Kwak, Taejung Kim, and Heungjoo Shin Ulsan National Institute of Science and Technology (UNIST), KOREA

f - MEMS Physical and Chemical Sensors

Inertial Sensors

120 PPM OUALITY FACTOR THERMAL STABILITY FROM -40°C TO +60°C OF A DUAL-AXIS T249-f MEMS GYROSCOPE BASED ON JOULE EFFECT DYNAMIC CONTROL

Jian Cui^{1,2} and Qiancheng Zhao^{1,2}

¹Peking University, CHINA and ²Beijing Advanced Innovation Center for Integrated Circuits, CHINA

W349-f A FORCE-BANLANCE CAPACITIVE MEMS GRAVIMETER WITH SUPERIOR RESPONSE TIME, SELF-NOISE AND DRIFT

Le Gao¹, Fangzheng Li¹, Jian Zhang¹, Bingyang Cai¹, Wenjie Wu¹, and Liangcheng Tu² ¹Huazhong University of Science and Technology, CHINA and ²Sun Yat-sen University, CHINA

M150-f A MEMS-BASED GRAVIMETER FOR SIMULTANEOUS VERTICAL AND HORIZONTAL **EARTH TIDES MEASUREMENTS**

Lujia Yang¹, Xiaochao Xu¹, Qian Wang¹, Ji'ao Tian¹, Yanyan Fang¹,

Chun Zhao¹, Wenjie Wu¹, Fangjing Hu¹, and Liangcheng Tu^{1,2}

¹Huazhong University of Science and Technology, CHINA and ²Sun Yat-sen University (Zhuhai Campus), **CHINA**

A NOVEL MULTIPLE FOLDED BEAM DISK RESONATOR FOR MAXIMIZING THE T250-f THERMOELASTIC OUALITY FACTOR

Xiaopeng Sun¹, Xin Zhou¹, Lei Yu², Kaixuan He², Xuezhong Wu¹, and Dingbang Xiao¹

¹National University of Defense Technology, CHINA and

²East China Institute of Photo-Electronic IC, CHINA

A TIME-SERIES CONFIGURATION METHOD OF MODE REVERSAL MEMS GYROSCOPES W350-f UNDER DIFFERENT TEMPERATURE-VARYING CONDITIONS

Liangqian Chen, Tongqiao Miao, Qingsong Li, Peng Wang, Junjian Li,

Xuezhong Wu, Dingbang Xiao, and Xiang Xi

National University of Defense Technology, CHINA

ACOUSTICALLY ISOLATED MEMS BAW GYROSCOPES M151-f

Diego Emilio Serrano, Amir Rahafrooz, Duane Younkin, Kieran Nunan,

Mitul Dalal, Sagnik Pal, and Ijaz Jafri

Panasonic Device Solutions Laboratory of Massachusetts, USA

T251-f ACTIVE QUALITY FACTOR STABILIZATION OF MEMS RESONATOR UTILIZING ELECTRICAL DISSIPATION REGULATION

Yang Zhao, Qin Shi, Guoming Xia, and Anping Qiu

Nanjing University of Science and Technology, CHINA

DEMONSTRATION OF GYRO-LESS NORTH FINDING USING A T-SHAPED MEMS W351-f DIFFERENTIAL RESONANT ACCELEROMETER

Kei Masunishi, Etsuji Ogawa, Daiki Ono, Fumito Miyazaki, Hiroki Hiraga, Kengo Uchida, Jumpei Ogawa, Hideaki Murase, and Yasushi Tomizawa

Toshiba Corporation, JAPAN

M152-f ENHANCED STIFFNESS SENSITIVITY IN A MODE LOCALIZED SENSOR USING INTERNAL RESONANCE ACTUATION

Jianlin Chen¹, Hemin Zhang², Takashiro Tsukamoto¹, Michael Kraft², and Shuji Tanaka¹ ¹Tohoku University, JAPAN and ²KU Leuven, BELGIUM

MODELING STRESS EFFECTS ON FREQUENCIES OF A MEMS RING GYROSCOPE T252-f

Mehran Hosseini-Pishrobat, Baha Erim Uzunoglu, and Erdinc Tatar Bilkent University, TURKEY

RATE INTEGRATING GYROSCOPE TUNED BY FOCUS ION BEAM TRIMMING AND W352-f INDEPENDENT CW/CCW MODES CONTROL

Jianlin Chen¹, Takashiro Tsukamoto¹, Giacomo Langfelder², and Shuji Tanaka¹

¹Tohoku University, JAPAN and ²Politecnico di Milano, ITALY

M153-f TEMPERATURE DEPENDENCE OF QUALITY FACTORS AT HIGH FREQUENCIES IN MEMS GYROSCOPES

Daniel Schiwietz^{1,2}, Eva M. Weig², and Peter Degenfeld-Schonburg¹

Robert Bosch GmbH, GERMANY and ²Technical University of Munich, GERMANY

f - MEMS Physical and Chemical Sensors

Manufacturing Techniques for Physical Sensors

T253-f 0.5MM×0.5MM 150KPA-MEASURE-RANGE HIGH-TEMPERATURE PRESSURE SENSOR WITH HIGH-PERFORMANCE AND LOW FABRICATION-COST

Peng Li^{1,2}, Wei Li¹, Changnan Chen^{1,3}, Ke Sun¹, Min Liu¹, Sheng Wu¹,

Pichao Pan^{1,3}, Jiachou Wang^{1,3}, and Xinxin Li^{1,2,3}

¹Chinese Academy of Sciences, CHINA, ²Fudan University, CHINA, and

³University of Chinese Academy of Sciences, CHINA

W353-f AUTOMATIC PICO LASER TRIMMING SYSTEM FOR SILICON MEMS RESONANT DEVICES BASED ON IMAGE RECOGNITION

Yuxian Liu¹, Qiancheng Zhao^{1,2}, Dacheng Zhang¹, and Jian Cui^{1,2}

¹Peking University, CHINA and ²Beijing Advanced Innovation Center for Integrated Circuits, CHINA

M154-f MICROMACHINING FUSED SILICA MICRO SHELL RESONATOR WITH QUARTZ GLASS MOLD BY THERMAL REFLOW

Zhaoxi Su, Bin Luo, Qiankai Tang, Linqian Zhu, and Jintang Shang Southeast University, CHINA

T254-f WAFER-LEVEL PATTERNING OF TIN OXIDE NANOSHEETS FOR MEMS GAS SENSORS

Mingjie Li, Wenxin Luo, Xiaojiang Liu, Gaoqiang Niu, and Fei Wang Southern University of Science and Technology, CHINA

f - MEMS Physical and Chemical Sensors

Materials for Physical Sensors

W354-f AIR DAMPING EFFECTS ON DIFFERENT MODES OF AIN-on-Si MICROELECTROMECHANICAL RESONATORS

Yuncong Liu¹, S M Enamul Hoque Yousuf¹, Afzaal Qamar², Mina Rais-Zadeh^{2,3}, and Philip X.-L. Feng¹ *University of Florida, USA, ²University of Michigan, USA, and ³California Institute of Technology, USA*

M155-f $\,$ A NOVEL PIEZORESISTIVE PRESSURE SENSOR BASED ON CR-DOPED V_2O_3 THIN FILM

Michiel Gidts, Wei-Fan Hsu, María Recaman Payo, Shashwat Kushwaha, Chen Wang, Frederik Ceyssens, Dominiek Reynaerts, Jean-Pierre Locquet, and Michael Kraft *KU Leuven, BELGIUM*

f - MEMS Physical and Chemical Sensors

Metrology and Measurement Techniques for MEMS/NEMS Sensors

T255-f A NOVEL FEEDTHROUGH CANCELLATION TECHNIQUE FOR PIEZOELECTRIC MEMS RESONANT SENSORS IN IONIC LIQUID MEDIUM

Cheng-Yen Wu, Zhong-Wei Lin, and Sheng-Shian Li National Tsing Hua University, TAIWAN

W355-f CHARACTERIZATION OF PACKAGING STRESS WITH A CAPACITIVE STRESS SENSOR ARRAY

Tolga Veske¹, Derin Erkan¹, and Erdinc Tatar^{1,2}

¹Bilkent University, TURKEY and ²The National Nanotechnology Research Center (UNAM), TURKEY

M156-f MILLISECOND-LEVEL PULSE-HEATING SENSING SYSTEM FOR MEMS-BASED GAS SENSORS

Yi Zhuang, Gaoqiang Niu, Lang Wu, and Fei Wang Southern University of Science and Technology, CHINA

T256-F MULTIPLE PARAMETER DECOUPLING USING A SINGLE RESONANT MEMS SENSOR VIA BLUE SIDEBAND EXCITATION

Jingqian Xi¹, Lei Xu¹, Yuan Wang², Fangjing Hu¹, Chengxin Li⁴, Linlin Wang⁴,

Huafeng Liu¹, Chen Wang⁴, Michael Kraft⁴, and Chun Zhao³

¹Huazhong University of Science and Technology, CHINA, ²University of Macau, CHINA,

³University of York, UK, and ⁴University Leuven, BELGIUM

f - MEMS Physical and Chemical Sensors

Nanoscale Physical Sensors

W356-F DIAMOND NANOWIRES ARRAY PREPARED BY ANNEALING NANO-CRYSTALLINE DIAMOND IN AIR AND ITS APPLICATION IN FIELD EMISSION

Yang Wang, Chen Lin, and Jinwen Zhang *Peking University, CHINA*

M157-f OUANTIFIED STRESS RELAXATION IN CARBON NANOTUBE RESONATORS

Morten Vollmann, Cosmin Roman, Miroslav Haluska, and Christofer Hierold ETH Zürich. SWITZERLAND

T257-f SELF-REFERENCED TEMPERATURE SENSORS BASED ON CASCADED SILICON RING RESONATOR

Xiantao Zhu, Minmin You, Zude Lin, Bin Yang, and Jingquan Liu *Shanghai Jiao Tong University, CHINA*

f - MEMS Physical and Chemical Sensors

Sonic & Ultrasonic MEMS Transducers

W357-f A 0.35 mm² SYSTEM ON CHIP LEVEL DETECTOR BASED ON AN ANNULAR PMUT-ON-CMOS ARRAY

Eyglis Ledesma, Iván Zamora, Francesc Torres, Arantxa Uranga, and Núria Barniol *Universitat Autònoma de Barcelona, SPAIN*

M158-f AN ALSCN PMUT-ON-CMOS SENSOR FOR MONITORING FLUIDS' DENSITY, VISCOSITY, SOUND VELOCITY, AND COMPRESSIBILITY

Eyglis Ledesma, Iván Zamora, Jesús Yanez, Arantxa Uranga, and Núria Barniol *Universitat Autònoma de Barcelona, SPAIN*

T258-f AUTO-POSITIONING AND HAPTIC STIMULATIONS VIA A 35 MM SQUARE PMUT ARRAY

Wei Yue¹, Yande Peng¹, Hanxiao Liu¹, Fan Xia¹, Fanping Sui¹, Seiji Umezawa², Shinsuke Ikeuchi², Yasuhiro Aida², and Liwei Lin¹

¹University of California, Berkeley, USA and ²Murata Manufacturing Co., Ltd., JAPAN

W358-f BODY FORCE BASED DROPLET EJECTION BY GHZ ACOUSTIC MICRO-TRANSDUCER

Haitao Zhang, Yangchao Zhou, Menglun Zhang, Wenlan Guo, Chen Sun, Xuexin Duan, and Wei Pang *Tianjin University, CHINA*

M159-f BONE CONDUCTION PICKUP BASED ON PIEZOELECTRIC MICROMACHINED ULTRASONIC TRANSDUCERS

Chongbin Liu¹, Xiangyang Wang¹, Yong Xie², and Guoqiang Wu¹ Wuhan University, CHINA and ²Xidian University, CHINA

T259-f BREAKING THE DEAD ZONE LIMITATION OF PMUTS BASED ON A PHASE SHIFT OF DRIVING WAVEFORM WITH WINDOW FUNCTION

Chun-You Liu, Chin-Yu Chang, and Sheng-Shian Li *National Tsing Hua University, TAIWAN*

W359-f DRONE-MOUNTED LOW-FREQUENCY PMUTS FOR > 6-METER RANGEFINDER IN AIR

Hanxiao Liu¹, Yande Peng¹, Wei Yue¹, Seiji Umezawa², Shinsuke Ikeuchi², Yasuhiro Aida², Chunming Chen¹, Peggy Tsao¹, and Liwei Lin¹

¹University of California, Berkeley, USA and ²Murata Manufacturing Co., Ltd., JAPAN

M160-f MASS PRODUCED MICROMACHINED ULTRASONIC TIME-OF-FLIGHT SENSORS OPERATING IN DIFFERENT FREQUENCY BANDS

Richard J. Przybyla¹, Stefon E. Shelton¹, Cathy Lee¹, Ben Eovino¹, Quy Chau¹, Mitchell H. Kline¹, Oleg I. Izyumin¹, and David A. Horsley^{1,2}

¹TDK Invensense, USA and ²University of California, Davis, USA

T260-f MEMS FIRST-ORDER BESSEL BEAM ACOUSTIC TRANSDUCER FOR PARTICLE TRAPPING AND CONTROLLABLE ROTATING

Jiaqi Li¹, Zhenhuan Sun¹, Yuyu Jia¹, Teng Li¹, Haojian Lu², Lurui Zhao³, Hai Liu³, and Song Liu¹ ShanghaiTech University, CHINA, ²Zhejiang University, CHINA, and ³University of Southern California, Los Angeles, USA

W360-f NON-INVASIVE CAROTID ARTERY MONITORING BY USING ALUMINUM NITRIDE PMUT CLOSE-PACKED ARRAYS

Sheng Wu^{1,2,3}, Kangfu Liu², Shuai Shao², Wei Li^{1,3}, Ying Chen^{1,3}, Tao Wu², and Xinxin Li^{1,3}
¹Chinese Academy of Sciences, CHINA, ²ShanghaiTech University, CHINA, and
³University of Chinese Academy of Sciences, CHINA

M161-f NON-LINEAR BEHAVIORAL MODELING OF CAPACITIVE MEMS MICROPHONES

Sebastian Anzinger^{1,2}, Hutomo Suryo Wasisto¹, Abhiraj Basavanna¹, and Alfons Dehé^{2,3}
¹Infineon Technologies AG, GERMANY, ²University of Freiburg, GERMANY, and
²Hahn-Schickard-Gesellschaft, GERMANY

T261-f VORTEX-BEAM ACOUSTIC TRANSDUCER FOR UNDERWATER PROPULSION

Jaehoon Lee, Kianoush Sadeghian Esfahani, and Eun S. Kim *University of Southern California, USA*

W361-F WIDEBAND AND HIGHLY SENSITIVE MICROMACHINED PZT FILM-BASED ULTRASONIC MICROPHONE WITH PARYLENE FILM AND FLEXIBLE HELMHOLTZ RESONATOR ENHANCEMENT

Chung-Hao Huang and Guo-Hua Feng National Tsing Hua University, TAIWAN

f - MEMS Physical and Chemical Sensors

Other Physical Sensors

M162-f HALBACH-ARRAY MAGNETIC COIL ARRANGEMENT ON CMOS CHIP FOR SENSITIVITY ENHANCEMENT OF INDUCTIVE TACTILE SENSOR

Tien Chou, Zih-Song Hu, and Weileun Fang National Tsing Hua University, TAIWAN

T262-f ON-MEMS-CHIP COMPACT TEMPERATURE SENSOR FOR LARGE-VOLUME, LOW-COST SENSOR CALIBRATION

Paolo Frigerio¹, Andrea Fagnani¹, Valentina Zega¹, Gabriele Gattere², Attilio Frangi¹, and Giacomo Langfelder¹

¹Politecnico di Milano, ITALY and ²STMicroelectronics, ITALY

PARTICULATE MATTER SENSOR BASED ON TWO STAGE CASCADE VIRTUAL IMPACTORS W362-f AND THERMOPHORETIC MICROHEATERS

Kwang-Wook Choi¹, Ilhwan Kim¹, Seokwhan Chung¹, Gi-Bong Sung², and Se-Jin Yook² ¹Samsung Advanced Institute of Technology, KOREA and ²Hanyang University, KOREA

g – Micro- and Nanofluidics **Biological and Medical Microfluidics and Nanofluidics**

A MICROFLUIDIC OXYGEN GRADIENT GENERATOR FOR THE STUDY OF AEROTROPISM M163-g IN HYPHAE OF OOMYCETES

Ayelen Tayagui^{1,2}, Yiling Sun^{1,2}, Ashley Garrill¹, and Volker Nock^{1,2}

¹University of Canterbury, NEW ZEALAND and

²MacDiarmid Institute for Advanced Materials and Nanotechnology, NEW ZEALAND

A PAPER-BASED DUAL APTAMER ASSAY ON AN INTEGRATED MICROFLUIDIC SYSTEM T263-g FOR DETECTION OF HNP 1 AS A BIOMARKER FOR PERIPROSTHETIC JOINT INFECTIONS

Rishabh Gandotra¹, Feng-Chih Kuo², Mel S. Lee³, and Gwo-Bin Lee¹

¹National Tsing Hua University, TAIWAN, ²Kaohsiung Chang Gung Memorial Hospital, TAIWAN, and ³Paochien Hospital, TAIWAN

AN INTEGRATED MICROFLUIDIC PLATFORM FOR TUMOR CELL SEPARATION AND W363-g FLUORESCENCE IN SITU HYBRIDIZATION AT SINGLE CELL LEVEL

Shihui Qiu^{1,2}, Na Li^{1,2}, Zhenhua Wu^{1,2}, Jianlong Zhao^{1,2}, and Hongju Mao^{1,2}

¹Chinese Academy of Science, CHINA and ²University of Chinese Academy of Sciences, CHINA

CHARACTERIZATION OF OOCYTE HARDENING USING A MICROFLUIDIC ASPIRATION-M164-g ASSISTED ELECTRICAL IMPEDANCE SPECTROSCOPY SYSTEM

Yuan Cao, Julia Floehr, and Uwe Schnakenberg

RWTH Aachen University, GERMANY

DOUBLE PULSE IRRADIATION OF FS LASER FOR ENHANCING THE PERFORMANCE OF T264-g PRECISE LASER SORTING METHOD

Ryota Kiya¹, Yoshinaga Rintaro¹, Yo Tanaka², Yaxiaer Yalikun^{1,2}, and Yoichiroh Hosokawa¹

¹Nara Institute of Science and Technology, JAPAN and

²Institute of Physical and Chemical Research (RIKEN), JAPAN

DROPLET BASED HIGH THROUGHPUT SINGLE-SPERM CRYOPRESERVATION PLATFORM

Na Li^{1,2}, Shihui Qiu^{1,3}, Zhenhua Wu^{1,3}, and Hongju Mao^{1,3}

¹Chinese Academy of Sciences, CHINA, ²ShanghaiTech University, CHINA, and

³University of Chinese Academy of Sciences, CHINA

DUAL ION-SELECTIVE MEMBRANE DEPOSITED ION-SENSITIVE FIELD-EFFECT M165-g

TRANSISTOR (DISM-ISFET) INTEGRATING WHOLE BLOOD PROCESSING

MICROCHAMBER FOR IN SITU BLOOD ION TESTING

Xiao-Wen Chen, Syuan-Rong Huang, and Nien-Tsu Huang

National Taiwan University, TAIWAN

g – Micro- and Nanofluidics Generic Microfluidics & Nanofluidics

W365-g STRONG MICROSTREAMING FROM A PINNED OSCILLATING MEMBRANE AND APPLICATION TO GAS EXCHANGE

Anthony L. Mercader and Sung Kwon Cho

University of Pittsburgh, USA

M166-g TUNABLE NANOPORE-INTEGRATED MICRO-/NANOFLUIDIC PLATFORM FOR ION TRANSPORT CONTROL IN THE PRESENCE OF CONCENTRATION AND TEMPERATURE GRADIENTS

Dongwoo Seo¹, Dongjun Kim¹, Jongwan Lee¹, Cong Wang², Jungyul Park², and Taesung Kim¹

¹Ulsan National Institute of Science and Technology (UNIST), KOREA and ²Sogang University, KOREA

g – Micro- and Nanofluidics

Integrated/Embedded Microfluidics and Nanofluidic Systems & Platforms

W366-g QUANTITATIVE ASSESSMENT OF CAPTURED MAGNETIC NANOPARTICLES USING SELF-POWERED MAGNETOELECTRIC PLATFORM FOR BIOLOGICAL APPLICATIONS

Pankaj Pathak, Vinit K. Yadav, Samaresh Das, and Dhiman Mallick *Indian Institute Of Technology Delhi, INDIA*

M167-g REAL-TIME OPERATION OF MICROCANTILEVER-BASED IN-PLANE RESONATORS PARTIALLY IMMERSED IN A MICROFLUIDIC SAMPLER

Jiushuai Xu, Entian Cao, Michael Fahrbach, Vladislav Agluschewitsch, Andreas Waag, and Erwin Peiner *Technische Universität Braunschweig, GERMANY*

T267-g SUSPENDED NANOCHANNEL RESONATORS MADE BY NANOIMPRINT AND GAS PHASE DEPOSITION

Manuel Müller¹, Jeremy Teuber¹, Rukan Nasri¹, Francesc Torres Canals², Núria Barniol², Jordi Llobet Sixto³, Xavier Borrise³, Francesc Perez-Murano³, and Irene Fernandez-Cuesta¹ University of Hamburg, GERMANY, ²Universitat Autónoma de Barcelona, SPAIN, and ³IMB-CNM CSIC, SPAIN

g – Micro- and Nanofluidics Manufacturing for Micro- and Nanofluidics

W367-g DEVELOPING AN EXTREMELY HIGH FLOW RATE PNEUMATIC PERISTALTIC MICROPUMP FOR BLOOD PLASMA SEPARATION WITH INERTIAL PARTICLE FOCUSING TECHNIQUE FROM FINGERTIP BLOOD WITH LANCETS

Tuan N.A. Vo^{1,2,3}, Pin-Chuan Chen¹, and Pai-Shan Chen⁴

¹National Taiwan University of Science and Technology, TAIWAN, ²Ho Chi Minh City University of Technology (HCMUT), VIETNAM, ³Vietnam National University, VIETNAM, and ⁴National Taiwan University, TAIWAN

M168-g DIRECT PATTERNING ON POROUS SURFACE USING DROP IMPACT PRINTING

Bheema Sankar Reddy¹, Chandantaru Dey Modak¹,², Rutvik Lathia¹, Bhawana Agarwal¹,³, Ebinesh Abraham R¹, and Prosenjit Sen¹ ¹Indian Institute of Science, Bangalore, INDIA, ²CNRS - ESPCI PSL, France, and ³Johns Hopkins University, USA

T268-g MANUFACTURING 3D-PRINTED PAPER MICROFLUIDICS INTEGRATED WITH IONIZATION MASS-SPECTROMETRY FOR ILLICIT DRUGS ANALYSIS AND ON-CHIP CHROMATOGRAPHY

Muhammad Faizul Zaki¹, Pin-Chuan Chen¹, Yi-Xin Wu², and Pai-Shan Chen²
¹National Taiwan University of Science and Technology, TAIWAN and
²National Taiwan University, TAIWAN

g – Micro- and Nanofluidics Materials for Micro & Microfluidics

W368-g DETECTION LIMITS IN NANOMECHANICAL MASS FLOW SENSING FOR NANOFLUIDICS WITH NANOWIRE OPEN CHANNELS

Javier E. Escobar, Juan Molina, Eduardo Gil-Santos, José J. Ruz, Óscar Malvar, Priscila M. Kosaka, Javier Tamayo, Álvaro San Paulo, and Montserrat Calleja *Instituto de Micro y Nanotecnología, IMN-CNM (CSIC), SPAIN*

g – Micro- and Nanofluidics Modeling of Micro & Nanofluidics

M169-g CONTROLLING PARTICLE AGGREGATION AND SEPARATION IN LIQUID ON MEMBRANE RESONATORS

Haoran Zhang^{1,2}, Hao Jia^{1,2}, and Xinxin Li^{1,2}

¹Chinese Academy of Sciences, CHINA and ²University of Chinese Academy of Sciences, CHINA

T269-g DEVELOPMENT OF BOAT MODEL POWERED BY ELECTRO-HYDRODYNAMIC PROPULSION SYSTEM

Luan Ngoc Mai^{1,2}, Tuan-Khoa Nguyen³, Trung Hieu Vu³, Thien Xuan Dinh⁴, Canh-Dung Tran⁵, Hoang-Phuong Phan⁶, Toan Dinh⁵, Thanh Nguyen⁵, Nam-Trung Nguyen³, Dzung Viet Dao³, and Van Thanh Dau³

¹Ho Chi Minh City University of Technology, VIETNAM, ²Vietnam National University Ho Chi Minh City, VIETNAM, ³Griffith University, AUSTRALIA, ⁴Explosion Research Institute Inc., JAPAN, ⁵University of Southern Queensland, AUSTRALIA, and ⁶University of New South Wales, AUSTRALIA

W369-g HEMODYNAMIC ANALYSIS OF CARDIOMEMS: ADVERSE HEMODYNAMIC EFFECTS

Zhenhao Liu¹, Jiangli Han², and Xing Chen¹

¹Beihang University, CHINA and ²Peking University Third Hospital, CHINA

M170-g MODAL QUALITY FACTOR INVERSION OF NON-SLENDER MEMS RESONATORS BETWEEN GASES AND LIQUIDS

Andre L. Gesing, Thomas Tran, Daniel Platz, and Ulrich Schmid *TU Wien, AUSTRIA*

g – Micro- and Nanofluidics Other Micro- and Nanofluidics

T270-g CLASSIFYING CELL CYCLE BY ELECTRICAL PROPERTIES USING MACHINE LEARNING

Jian Wei and Xiaoxing Xing

Beijing University of Chemical Technology, CHINA

W370-g HIGH-THROUGHPUT SPHERICAL SUPRAPARTICLE SELF-ASSEMBLY BY ENHANCED EVAPORATION OF COLLOIDAL WATER DROPLETS THROUGH THIN FILM OF WATER-SOLUBLE OIL

Wonhyung Lee, Joowon Rhee, and Joonwon Kim

Pohang University of Science and Technology (POSTECH), KOREA

M171-g IN-ICE POLYMERIZATION FOR FUNCTIONAL HYDROGEL MICROBEAD WITH FLASH FREEZING CENTRIFUGAL MICROFLUIDIC DEVICE

Tomomi Murayama¹, Koki Yoshida¹, Yuta Kurashina², and Hiroaki Onoe¹

¹Keio University, JAPAN and ²Tokyo University of Agriculture and Technology, JAPAN

T271-g TEMPERATURE-RESPONSIVE MICROCAPSULES MANUFACTURED BY PROMOTING CONTROLLED CLOAKING WITH THE HELP OF MICRO/NANOPARTICLES

Rutvik Lathia¹, Bheema Sankar Reddy¹, Chandantaru Dey Modak^{1,2},

Satchit Nagpal^{1,3}, and Prosenjit Sen¹

¹Indian Institute of Science, INDIA, ²CNRS - ESPCI PSL, FRANCE, and ³Texas A&M University, USA

W371-g WATER VITRIFICATION IN A MICROCHANNEL AT LOW COOLING RATE

Ayane Sato, Tomohiro Hayashi, and Tadashi Ishida *Tokyo Institute of Technology, JAPAN*

h - Optical, RF and Electromagnetics for MEMS/NEMS Electrical Field and Magnetic Field Sensors and Transducers

M172-h A HIGHLY SENSITIVE 3-AXIS MICRO SEARCH-COIL MAGNETOMETER ENABLED BY HIGH DENSITY THROUGH-SILICON-VIA PROCESS

Hadi Tavakkoli, Mingzheng Duan, Longheng Qi, Izhar, Xu Zhao, and Yi-Kuen Lee *Hong Kong University of Science and Technology, HONG KONG*

T272-h FULLY INTEGRATED BACK-BIASED 3D HALL SENSOR WITH WAFER-LEVEL INTEGRATED PERMANENT MICROMAGNETS

Björn Gojdka¹, Daniel Cichon², Markus Stahl-Offergeld², Dominik Schröder³, Niels Clausen¹, Christian Hedayat³, Hans-Peter Hohe², and Thomas Lisec¹

¹Fraunhofer Institute for Silicon Technology ISIT, GERMANY, ²Fraunhofer Institute for Integrated Circuits IIS, GERMANY, and ³Fraunhofer Institute for Electronic Nano Systems ENAS, GERMANY

h - Optical, RF and Electromagnetics for MEMS/NEMS Free Space Optical Components & Systems

W372-h A LARGE-STROKE TIP-TILT-PISTON MICROMIRROR WITH ELECTROMAGNETIC ACTUATORS BASED ON METALLIC GLASS

Chuan-Hui Ou, Nguyen V. Toan, and Takahito Ono *Tohoku University, JAPAN*

M173-h ARBITRARY SHAPED BACKSIDE REINFORCEMENT FOR TWO DIMENSIONAL RESONANT MICROMIRRORS

Takashi Sasaki, Adrien Piot, Anton Lagosh, Clement Fleury, Markus Bainschab, Yanfen Zhai, Marcus Baumgart, Sara Guerreiro, Dominik Holzmann, Aleš Travnik, and Mohssen Moridi Silicon Austria Labs, AUSTRIA

T273-h HIGH TRANSMITTANCE METASURFACE HOLOGRAMS USING SILICON NITRIDE

Masakazu Yamaguchi, Hiroki Saito, Satoshi Ikezawa, and Kentaro Iwami *Tokyo University of Agriculture and Technology, JAPAN*

W373-h MULTIFUNCTIONAL OPTICAL METASURFACE FOR ANOMALOUS REFLECTION, STRUCTURAL COLOR, AND SURFACE LATTICE RESONANCE

Liye Li¹, Hongshun Sun¹, Yifan Ouyang¹, Shengxiao Jin¹, Tian Kang¹, Zhimei Qi², and Wengang Wu¹ *Peking University, CHINA and ²Chinese Academy of Science, CHINA*

M174-h NOVEL WAVEFRONT-SPLITTING INTERFEROMETER FOR ULTRA-COMPACT BROADBAND FT-IR SPECTROSCOPY EXTENDING TO VISIBLE RANGE

Bassem Mortada¹, Yasser M. Sabry^{1,2}, Bassam Saadany¹, Tarik Bourouina³, and Diaa Khalil² ¹Si-Ware Systems, EGYPT, ²Ain Shams University, EGYPT, and ³Université Gustave Eiffel, FRANCE

T274-h PIEZOELECTRICALLY ACTUATED MICROMIRROR WITH DYNAMIC DEFORMATION COMPENSATION MECHANISM

Takashi Sasaki, Adrien Piot, Jaka Pribošek, Anton Lagosh, Clement Fleury, Markus Bainschab, Yanfen Zhai, Marcus Baumgart, Sara Guerreiro, Dominik Holzmann, Aleš Travnik, and Mohssen Moridi Silicon Austria Labs, AUSTRIA

W374-h RESONANT d₃₃ MODE PZT MEMS MIRROR EXCITED WITH DIRECTIONAL INTERDIGITATED ELECTRODES

Pooja Thakkar, Anton Lagosh, Takashi Sasaki, Markus Bainschab, and Jaka Pribošek Silicon Austria Labs GmbH, AUSTRIA

M175-h RESONANT PIEZOELECTRIC VARIFOCAL MIRROR WITH ON-CHIP INTEGRATED DIFFRACTIVE OPTICS FOR INCREASED FREQUENCY RESPONSE

Jaka Pribošek, Anton Lagosh, Pooja Thakkar, Takashi Sasaki, and Markus Bainschab Silicon Austria Labs, AUSTRIA

T275-h UNIQUE DISPERSION RELATION FOR PLASMONIC PHOTODETECTORS WITH SUBMICRON GRATING

Yuki Kaneda¹, Masaaki Oshita¹, Utana Yamaoka¹, Shiro Saito², and Tetsuo Kan¹ *University of Electro-Communications, JAPAN and ²IMRA JAPAN Co., LTD., JAPAN*

h - Optical, RF and Electromagnetics for MEMS/NEMS Infrared (IR) Sensors and Imaging Systems

W375-h INTEGRATION OF A HIGH TEMPERATURE TRANSITION METAL OXIDE NTC THIN FILM IN A MICROBOLOMETER FOR LWIR DETECTION

Sarah Risquez¹, Sebastian Redolfi², Clement Fleury¹, Matthias Wulf², Ali Roshanghias¹, Adrien Piot¹, Jeremy Streque¹, Kerstin Schmoltner², Thang Duy Dao¹, Markus Puff², and Mohssen Moridi¹ Silicon Austria Labs GmbH, AUSTRIA and ²TDK Electronics GmbH & Co OG, AUSTRIA

M176-h PERIODIC CAVITIES ON THE IR-ABSORBER FOR RESPONSIVITY ENHANCEMENT OF CMOS-MEMS THERMOELECTRIC IR SENSOR

Yung-Chen Li, Tien Chou, Pen-Sheng Lin, Yu-Cheng Huang, Fuchi Shih, You-An Lin, Da-Jen Yen, Mei-Feng Lai, and Weileun Fang National Tsing Hua University, TAIWAN

T276-h ULTRA-LARGE PIXEL ARRAY PHOTOTHERMAL TRANSDUCER AND ITS THERMAL PERFORMANCE PREDICTION STRATEGY

Defang Li^{1,3}, Jinying Zhang^{1,2}, Jiushuai Xu³, Erwin Peiner³, Zhuo Li^{1,2}, Xin Wang¹, Suhui Yang¹, and Yanze Gao¹

¹Beijing Institute of Technology, CHINA, ²Yangtze Delta Region Academy of Beijing Institute of Technology, CHINA, and ³Technische Universität Braunschweig, GERMANY

h - Optical, RF and Electromagnetics for MEMS/NEMS MEMS for Timing & Frequency Control

W376-h A CMOS-MEMS BEAM RESONATOR WITH Q > 10,000

Ting-Yi Chen and Wei-Chang Li National Taiwan University, TAIWAN

M177-h GENERIC TEMPERATURE COMPENSATION SCHEME FOR CMOS-MEMS RESONATORS BASED ON ARC-BEAM DERIVED ELECTRICAL STIFFNESS FREQUENCY PULLING

I-Chieh Hsieh, Hong-Sen Zheng, Chun-Pu Tsai, Ting-Yi Chen, and Wei-Chang Li *National Taiwan University, TAIWAN*

T277-h HIGH-Q AND LOW-MOTIONAL IMPEDANCE PIEZOELECTRIC MEMS RESONATOR THROUGH MECHANICAL MODE COUPLING

Linhai Huang¹, Zhihong Feng¹, Yuhao Xiao², Fengpei Sun¹, and Jinghui Xu¹ *Huawei Technologies Company Ltd., CHINA and ²Wuhan University, CHINA*

h - Optical, RF and Electromagnetics for MEMS/NEMS Photonic Components & Systems

W377-h CROSSTALK-FREE LARGE APERTURE 2D GIMBAL MICROMIRROR

Behrad Ghazinouri and Siyuan He *Toronto Metropolitan University, CANADA*

M178-h INVERSE INTERFERENCE EFFECT-ENHANCED ULTRASENSITIVE SENSING VIA MID-IR NANOANTENNAS

Hong Zhou, Dongxiao Li, Xinge Guo, Zhihao Ren, and Chengkuo Lee *National University of Singapore, SINGAPORE*

T278-h TWISTED AND CONTACTED AU MICRO-RODS 3D CHIRAL METAMATERIALS WITH CIRCULAR DICHROISM VIA AN ABSORPTIVE ROUTE IN LONG-WAVELENGTH INFRARED

Gaku Furusawa¹, Natsuki Kanda², Ryusuke Matsunaga², and Tetsuo Kan¹

¹University of Electro-Communications, JAPAN and ²University of Tokyo, JAPAN

h - Optical, RF and Electromagnetics for MEMS/NEMS RF MEMS Components & Systems

W378-h 3D HYBRID ACOUSTIC RESONATOR WITH COUPLED FREQUENCY RESPONSES OF SURFACE ACOUSTIC WAVE AND BULK ACOUSTIC WAVE

Liping Zhang^{1,2}, Shibin Zhang¹, Jinbo Wu^{1,2}, Pengcheng Zheng^{1,2}, Hulin Yao^{1,2}, Yang Chen^{1,2}, Kai Huang^{1,2}, Xiaomeng Zhao¹, Min Zhou¹, and Xin Ou^{1,2}

¹Chinese Academy of Sciences, CHINA and ²University of Chinese Academy of Sciences, CHINA

M179-h A C/Ku DUAL-BAND RECONFIGURABLE BAW FILTER USING POLARIZATION TUNING IN LAYERED SCALN

Dicheng Mo, Shaurya Dabas, Sushant Rassay, and Roozbeh Tabrizian *University of Florida, USA*

T279-h ACOUSTOELECTRIC-DRIVEN FREQUENCY MIXING IN MICROMACHINED LITHIUM NIOBATE ON SILICON WAVEGUIDES

Hakhamanesh Mansoorzare and Reza Abdolvand *University of Central Florida, USA*

W379-h EFFECT OF SCANDIUM COMPOSITION ON THE PHONON SCATTERING LIFETIME OF ALUMINUM SCANDIUM NITRIDE ACOUSTIC WAVE RESONATORS

Yue Zheng¹, Mingyo Park¹, Chao Yuan², and Azadeh Ansari¹
¹Georgia Institute of Technology, USA and ²Wuhan University, CHINA

M180-h LITHIUM NIOBATE THIN FILM BASED A₁ MODE RESONATORS WITH FREQUENCY UP TO 16 GHZ AND ELECTROMECHANICAL COUPLING FACTOR NEAR 35%

Rongxuan Su¹, Zhenyi Yu², Sulei Fu¹, Huiping Xu¹, Shuai Zhang¹, Peisen Liu¹, Yu Guo², Cheng Song¹, Fei Zeng¹, and Feng Pan¹

¹Tsinghua University, CHINA and ²Jiangnan University, CHINA

T280-h SUB-3 DB INSERTION LOSS BROADBAND ACOUSTIC DELAY LINES AND HIGH FOM RESONATORS IN LINBO₃/SIO₂/SI FUNCTIONAL SUBSTRATE

Chun-Chen Yeh, Chia-Hsien Tsai, Guan-Lin Wu, Tzu-Hsuan Hsu, and Ming-Huang Li National Tsing Hua University, TAIWAN

W380-h SUPPRESSION OF SPURIOUS MODES IN ALUMINUM NITRIDE S₁ LAMB WAVE RESONATORS USING A MECHANICAL SOFT-CONTACT SCHEME

Shao-Siang Tung¹, Tzu-Hsuan Hsu¹, Yens Ho², Yung-Hsiang Chen², Yelehanka R. Pradeep³, Rakesh Chand³, and Ming-Huang Li¹

¹National Tsing Hua University, TAIWAN, ²Vanguard International Semiconductor Corporation, TAIWAN, and ³Vanguard International Semiconductor Corporation Singapore PTE. Ltd., SINGAPORE

h - Optical, RF and Electromagnetics for MEMS/NEMS THz MEMS Components & Systems

M181-h TERAHERTZ REFLECTIVE METALENS FOR ARBITRARY OFF-AXIS FOCUSING WITH LARGE DEPTH OF FOCUS

Jiahao Miao, Yi Liu, Cong Lin, Zhanxuan Zhou, and Xiaomei Yu *Peking University, CHINA*

h - Optical, RF and Electromagnetics for MEMS/NEMS Other Electromagnetic MEMS/NEMS

T281-h TOWARDS A BETTER CMOS-MEMS RESOSWITCH USING ELECTROLESS PLATING FOR CONTACT ENGINEERING

Ting-Jui Liou, Chun-Pu Tsai, Ting-Yi Chen, and Wei-Chang Li National Taiwan University, TAIWAN

i - Open Posters

W381-i A MEMS-CMOS INFRA-RED MICROSYSTEM WITH IN-SENSOR MACHINE LEARNING CAPABILITIES

Marco Castellano, Ugo Garozzo, Luca Gandolfi, Davide Ruggiero, and Giuseppe Bruno STMicroelectronics, ITALY

M182-i A NOVEL BAROMETRIC PRESSURE SENSOR WITH A CAPACITVE TRANSDUCER AND IMPROVED PERFORMANCE

Thomas Friedrich¹, Volkmar Senz¹, and Ferenc Lukacs²
¹Robert Bosch GmbH, GERMANY and ²Robert Bosch Kft., HUNGARY

T282-i A NOVEL CLASS OF MOTION SENSORS FEATURED WITH AN ELECTRIC POTENTIAL SENSING CHANNEL

Enrico R. Alessi, Fabio Passaniti, and Emanuele Lavelli STMicroelectronics, ITALY

W382-i A STABLE MIR PHOTODETECTOR BASED ON 2D PTSI/P-SI NANOHOLE ARRAYS

Ashenafi A. Elyas, Masahiko Shiraishi, and Tetsuo Kan *University of Electro-communications, JAPAN*

M183-i AN EQUIVALENT CIRCUIT MODEL FOR THE PHASE GRADIENT METASURFACE ANALYSIS IN VISIBLE BAND

Liye Li¹, Senyong Hu¹, Yifan Ouyang¹, Yusa Chen¹, Meizhang Wu², and Wengang Wu¹ Peking University, CHINA and ²University of Science and Technology Beijing, CHINA

T283-i DETECTION OF MASS AND MATERIAL NATURE OF MICROPARTICLES BY A PIEZOELCTRIC MEMS

Francesco Foncellino and Luigi Barretta STMicroelectronics, ITALY

W383-i ELECTRO-OPTICAL TESTING SOLUTION FOR TMOS MEMS SENSOR SENSITIVITY ASSESSMENT AT WAFER LEVEL

Roberta Carbone, Dario Premi, and Marco Rossi STMicroelectronics. ITALY

M184-i FEMTOSECOND LASER DIRECT WRITING OF MASK FOR ACOUSTOFLUIDIC DEVICE FABRICATION

Yong Wang^{1,4}, Qian Zhang^{2,4}, Jingui Qian^{3,4}, Jin Xie^{2,4}, and Yongqing Fu⁴
¹Zhejiang University City College, CHINA, ²Zhejiang University, CHINA,
³HeFei University of Technology, CHINA, and ⁴Northumbria University, UK

T284-i HIGH PERFORMANCE SPUTTERED PZT PMUTS OPERATING IN THE ULTRASOUND IMAGING RANGE REPRODUCIBLE AT WAFER-SCALE

Jihang Liu¹, David Sze Wai Choong¹, Duan Jian Goh¹, Merugu Srinivas¹, Qing Xin Zhang¹, Steven Lee Hou Jang¹, Huamao Lin¹, Fabio Quaglia³, Domenico Giusti³, Laura Castoldi³, Claudia Pedrini³, Luca Barabani³, Annachiara Esposito³, Luigi Barretta³, Rossana Scaldaferri³, Alberto Leotti², Adriyan Hidayat Mohamed Hamsah³, Peter Chang Hyun Kee¹, and Lee En-Yuan Joshua¹ Institute of Microelectronics, SINGAPORE, ²ST Microelectronics, SINGAPORE, and ³ST Microelectronics, ITALY

W384-i PIEZOELECTRIC ACTUATOR INTRODUCTION FOR ACCURATE POSITIONING READ/WRITE ELEMENT IN HARD DISK DRIVE (HDD)

Domenico Giusti and Marco Ferrera STMicroelectronics, ITALY

M185-i PIEZOELECTRIC MEMS FOR MICROPARTICLES DETECTION: ALTERNATIVE READOUT FOR MASS DETECTION

Luigi Barretta and Francesco Foncellino STMicroelectronics, ITALY

T285-i SIDE WALL DETECTION TYPE SPR SENSOR WITH GOLD GRATING ON GLASS

Masaaki Oshita, Shinichi Suzuki, Kazuto Masamoto, and Tetsuo Kan *University of Electro-Communications, JAPAN*

W385-i SPUTTERED PZT AIR-COUPLED PMUTS WITH WIDE BANDWIDTH AND LONG DETECTION RANGE FOR RANGING APPLICATIONS

Mantalena Sarafianou¹, David Sze Wai Choong¹, Duan Jian Goh¹, Jihang Liu¹, Joshua En-Yuan Lee¹, Srinivas Merugu¹, Qing Xin Zhang¹, Peter Hyun Kee Chang¹, Fabio Quaglia², Domenico Giusti², Laura Castoldi², Filippo D'Ercoli, Riccardo Tacchini², Alberto Leotti³, and Dao Hao Sim³

¹Institute of Microelectronics, SINGAPORE, ²ST Microelectronics, ITALY, and

³ST Microelectronics, SINGAPORE

M186-i THERMOELECTRIC MIROPHONE

Akash Gupta¹, Dr. Achim Bittner¹, Prof. Dr.-Ing, and Alfons Dehe^{1,2}

¹Hahn-Schickard Institute for Applied Research e.V., GERMANY and ²University of Freiburg, GERMANY

T286-i ULTRA-PRECISE DEPOSITION: DIGITAL MICROMANUFACTURING FOR ADVANCED PACKAGING

Lukasz Witczak, Jolanta Gadzalinska, Iwona Gradzka-Kurzaj, Mateusz Lysien, Ludovic Schneider, Aneta Wiatrowska, Karolina Fiaczyk, Piotr Kowalczewski, Lukasz Kosior, and Filip Granek XTPL SA, POLAND

W386-i WAFER-LEVEL DEFECT CHARACTERIZATION AND POLARITY-DEPENDENT RESISTANCE DEGRADATION OF SPUTTERED SODIUM POTASSIUM NIOBATE THIN FILMS

Kuan-Ting Ho¹, Daniel Monteiro Diniz Reis¹, and Karla Hiller²

¹Robert Bosch GmbH, GERMANY and ²Technical University Chemnitz, GERMANY