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Electrostatically actuated microplates with multilayer and material anisotropy properties, are widely employed
in microelectromechanical systems. However, previous theories rarely consider the aforementioned properties
simultaneously, hindering their widespread application. This paper proposes a general theoretical model for
electrostatically actuated rectangular multilayer anisotropic microplates subjected to residual stress and hydro-
static pressure by combining the classical laminated thin plate theory, Galerkin method and a partial expansion
approach for nonlinear electrostatic force. This model enables successful establishment of closed‐form expres-
sions for the main mechanical behaviors, e.g. the pull‐in voltage, static deflection, and resonant frequency.
Validation of these expressions, using finite element method simulations and experimental results, shows sig-
nificant improvement in the analysis accuracy (15 times higher) compared to those theories neglecting the
material anisotropy, as well as excellent applicability across a wide range of DC voltages and dimensions.
Additionally, the influences of electrostatic softening effects and scale effects on the theories are also discussed.
1. Introduction

Micro‐ and nano‐sensors and actuators have been in high demand
for various industrial applications because of their advantages of small
size, high sensitivity, superior capacities of batch fabrication and sys-
tem integration [1–6]. As one of the building blocks of microelec-
tromechanical systems (MEMS) devices, electrostatically actuated
microplates have been widely used in resonators, micro‐pumps,
micro‐switches, etc. [7–11]. Generally, an electrostatically actuated
microplate‐based device composes of two microplates, in which one
microplate is suspended in parallel over the other fully fixed one.
The nonlinear mechanical behaviors of the suspended microplate
under electrostatic force, such as static deflection, resonant frequency
and pull‐in voltage, determine the device performance [12–19]. In
capacitive micromachined ultrasonic transducers (CMUTs) for
instance, the DC voltage determines the electromechanical coupling
coefficient by changing its static deflection [20]. For resonant bio-
chemical sensors, the DC voltage influences the detection sensitivity
by changing their fundamental resonant frequencies [21]. Besides,
the pull‐in voltage determines the applicable range of the DC voltage.
Understanding these performance‐related static and dynamic behav-
iors is important for the optimization and operation of microplate‐
based electrostatic devices, significantly decreasing the time and cost
for device development.

Towards this end, numerous studies have been done to investi-
gate the aforementioned mechanical behaviors [8,22,23]. Owing to
the inherent nonlinearity of the existing electrostatic force, the par-
tial differential equation governing the deflection and vibration is
difficult to be solved analytically using previously developed meth-
ods [24]. Therefore, some researchers developed step‐by‐step lin-
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Fig. 1. Schematic illustration of electrostatically actuated rectangular multi-
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earization methods and used different iterative methods to obtain
convergent solutions [25–27]. A large number of other researchers
utilized the Galerkin method to develop reduced‐order models for
this problem, which was demonstrated to be an effective approach
[28]. For example, Caruntu and Oyervides [29] developed a
reduced‐order model based on the classical thin plate theory to
study the effects of DC voltage and air damping on the resonant fre-
quency of clamped circular microplates. To predict the large deflec-
tion of microplates under electrostatic force, reduced‐order models
considering the middle‐plane stretching effects were established
[30]. For example, Vogl and Nayfeh [31], and Zhao et al. [24]
established reduced‐order models based von Karmán thin plate the-
ory. Sajadi et al. [32,33] established a reduced‐order model by com-
bining the von Karmán thin plate theory and an energy approach.
Further, Casimir force, thermal stress, and initial deformation were
introduced into the reduced‐order models [34–37]. More recently,
reduced‐order models based on the modified couple stress theory
were developed to simulate size effects [38–41]. Besides, many
other approaches, such as the finite element difference method,
shooting method and displacement iteration pull‐in extraction algo-
rithm have also been developed for the analysis of the nonlinear
mechanical behaviors [42–44].

Although the aforementioned work has made significant progress,
substantial efforts are still required for more efficient and accurate
modeling of the aforementioned nonlinear behaviors. Firstly, the
material anisotropy of microplates are rarely taken into account,
which results in significant analysis errors, reported to be 25%
[45,46]. Secondly, most of the developed theoretical models apply
to single‐layer microplates, limiting their application for multilayer
microplates which are more frequently employed in MEMS. Thirdly,
most previous methods are a semi‐analytical approach, and the solu-
tions are evaluated numerically, the accuracy of which fluctuates with
the iterative methods and voltage step size used [47]. Towards these
drawbacks, Maurizio Porfiri [48] and our group [49–51] developed
closed‐form expressions for clamped circular and rectangular micro-
plates. However, these expressions were applied to single‐layer isotro-
pic microplates. Zand and Ahmadian [42] studied the vibration
behavior of the multilayer isotropic microplates by combining the
finite element and finite difference methods. Cour et al. [52] investi-
gated the deflection and pull‐in voltage of two layers of anisotropic
microplates using lumped parameters. However, both aforementioned
studies were based on semi‐analytical methods and no closed‐form
expressions were proposed. Therefore, to date, a general theoretical
model and closed‐form expressions, which can simultaneously take
into account the multilayer and material anisotropy properties, have
not been established.

Herein, we develop a general theoretical model for electrostatically
actuated rectangular microplates with both properties of arbitrary
multilayers and material anisotropy considered, subjected to residual
stress and pressure using the classical laminated thin plate (CLTP) the-
ory, the Galerkin method and a partial expansion method to approxi-
mate electrostatic force. Based on this model, closed‐form
expressions for the static deflection, pull‐in voltage and resonant fre-
quency are established successfully. These closed‐form expressions
are validated by finite element method (FEM) simulation‐based para-
metric study and experimental results, showing that: 1) the accuracy
of the developed expressions is significantly improved compared with
that of the theories based on isotropic material properties; 2) these
expressions have the robustness and high analysis accuracy across a
wide range of DC voltages (up to 96% of pull‐in voltages) and dimen-
sions (thickness‐to‐width ratio of 1/100–1/20), even when the deflec-
tion of the microplate reaches its thickness. Additionally, we further
investigate the influences of electrostatic softening effect and scale
effects on the analysis accuracy of the developed closed‐form
expressions.
2

2. Problem formulation

2.1. Stress–strain relationships

The schematic of an electrostatically actuated rectangular micro-
plate with n layers is shown in Fig. 1. Each layer, as well as the whole
plate, is assumed to be anisotropic and thin. Each layer has the same
length of 2a and width of 2b, but different mechanical properties
and dielectric constants. The bottom microplate is fixed in parallel
with respect to the top multilayer microplate with a distance of d0,
between which the gap is assumed to be air or vacuum. The top micro-
plate with its all edges clamped can vibrate under the co‐action of DC
and AC voltages. The CLTP theory is used for the analysis of the non-
linear mechanical behaviors of the top multilayer microplate [53,54].

Theoretical modeling of electrostatically actuated multilayer aniso-
tropic microplates starts with the relationship between the stress and
strain of linear elastic materials, which can be described by Hooke’s
law as :

σ
∼k
pq ¼ C

∼ k

pqlmɛ
∼k
pq ð1Þ

where σ
∼k
pq and ɛ

∼k
pq represent stress and strain of the kth layer, respec-

tively; C
∼ k

pqlm represents the stiffness and the subscripts p,q, l, m = 1,

2, 3. Eq. (1) is an extremely complicated matrix because C
∼ k

pqlm is a fourth
rank tensor, representing 81 elastic constants. However, given the sym-
metry property of the stresses and strains, as well as the elastic and sym-
metric characteristics of the materials in most general cases of
anisotropy, Eq. (1) can be drastically simplified into Eq. (2) with 21
independent elastic constants.

σ
∼k
1

σ
∼k
2

σ
∼k
3

σ
∼k
4

σ
∼k
5

σ
∼k
6

2
666666666664

3
777777777775
¼

C
∼ k

11 C
∼ k

12 C
∼ k

13 C
∼ k

14 C
∼ k

15 C
∼ k

16

C
∼ k

21 C
∼ k

22 C
∼ k

23 C
∼ k

24 C
∼ k

25 C
∼ k

26

C
∼ k

31 C
∼ k

32 C
∼ k

33 C
∼ k

34 C
∼ k

35 C
∼ k

36

C
∼ k

41 C
∼ k

42 C
∼ k

43 C
∼ k

44 C
∼ k

45 C
∼ k

46

C
∼ k

51 C
∼ k

52 C
∼ k

53 C
∼ k

54 C
∼ k

55 C
∼ k

56

C
∼ k

61 C
∼ k

62 C
∼ k

63 C
∼ k

64 C
∼ k

65 C
∼ k

66

2
666666666666664

3
777777777777775

ɛ
∼k
1

ɛ
∼k
2

ɛ
∼k
3

ɛ
∼k
4

ɛ
∼k
5

ɛ
∼k
6

2
6666666666664

3
7777777777775

ð2Þ

where σ
∼k
i , ɛ

∼k
i and C̃k

pqlm are the condensed notations for σ
∼k
pq, ɛ

∼
pq and

C̃pqkl, respectively, where i, j= 1, 2,… 6 [54]. In the coordinate system,

stress matrix σ
∼k

for the kth layer can be rewritten as:
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and the corresponding strain matrix ɛ
∼k can be expressed as:
layer anisotropic microplates.



Fig. 2. Coordinate system for the transformation of stiffness matrix.
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where σ
∼
x (ɛ∼x), σ

∼
y (ɛ∼y) and σ

∼
z (ɛ∼z) are the principal stresses (principal

strains) in the x, y and z axes aligned with the principal material direc-
tions, respectively; τ∼yz (γ

∼
yz), τx̃z (γ

∼
xz) and τx̃y (γ

∼
xy) are the shear stresses

(shear strains) in yz, xz and xy planes, respectively. As silicon, with
orthotropic material properties, is the most commonly used material
in MEMS sensors and actuators [45], Eq. (2) can be further simplified
as:
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The transverse shear and normal strains in Eq. (5) can be ignored,
that is, γ̃xz = γ ̃yz = 0 and ε̃z = 0, because of the use of the CLTP theory.
Therefore, the stress–strain relationship at a plane stress state can be
derived from Eq. (5) as:
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where, Q̃k is a reduced stiffness matrix for the stiffness matrix in Eq. (5),
and each entry Q ̃ijk can be expressed in engineering elastic constants as:
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where Ek
x, E

k
y and Ezk are Young’s modulus in the principal material direc-

tions of the kth layer, respectively; correspondingly, μkxy and μkyx are the
Poisson’s ratios, and Gk

xy is the shear modulus.

2.2. Transformation of stiffness matrix

The stiffness matrices given in Eqs. (5)–(7) are based on the coor-
dinate system aligned with the principal material directions of the
kth layer. However, to analyze the mechanical behaviors of the whole
multilayer microplate, the stiffness matrices need to be transformed
into a common coordinate system. As shown in Fig. 2, xk, yk and zk

are the axes of the coordinate system aligned with the principal mate-
rial directions of the kth layer, and x, y and z are the axes of the com-
mon coordinate system of the whole multilayer microplate. Assuming
that the angle, θk, between the two coordinate systems is taken posi-
tive by rotating the xy plane counter‐clockwise to the xkyk plane
around the z‐axis, the stiffness matrix in the common coordinate sys-
tem can be obtained by:

Qk ¼ T�1Q
∼ k
T�T ¼

Qk
11 Qk

12 0
Qk

12 Qk
22 0

0 0 Qk
66
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where T−1 and T−T are given in Eqs. (A.1)–(A.4) in Appendix A, and Qk

is the stiffness matrix in the common coordinate system [54]. As such,
the stress–strain relationships can be rewritten as:
3
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where σxk (εk x) and σky (εk y) are the stresses (strains) in the x and y
axes of the common coordinate system, respectively; τxyk (γkxy) is the
shear stresses (shear strains) in the xy plane.

2.3. Moments and force distribution

The bending moments of multilayer anisotropic microplates can be
obtained by integrating the stresses over the n layers and summing the
resultant integration:
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Substituting the relationships between the strain and deflection
given by Eq. (11) into Eq. (9),

ɛx ɛy γxy
� �T ¼ �z @2w

@x2
@2w
@y2 2 @2w

@x@y

h iT ð11Þ

and then substituting the resultant equation into (10), the bending
moments can be rewritten as:
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where D11, D12, D22 and D66 are stiffnesses of the whole microplate,
which can be given as:

D11 ¼ 1
3 ∑
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ð13Þ
2.4. Residual stress

Residual stress is induced by the fabrication processes and mis-
match of thermal expansion coefficients between different components
of electrostatically actuated microplate‐based devices. Assuming that
the residual stress in each layer is biaxial stress and is constant in
both x and y direction [55], the overall residual stress acting on the
multilayer anisotropic microplate can be obtained by:
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Nx ¼ ∑
n

k¼1

R Zk
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R Zk
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σk
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ð14Þ

where σkrx and σkry, are the residual stress of the kth layer, respectively;
correspondingly, Nx and Ny are the overall residual stresses.

2.5. Nonlinear partial differential equation

By taking advantage of force equilibrium, the equation governing
the deflection of the rectangular multilayer anisotropic microplate
under electrostatic force, residual stress and hydrostatic pressure with
time, t, can be obtained as:

@2Mx

@x2 þ 2
@Mxy

@x@y
þ @2My

@y2
þ ρehe

@2w
@t2

¼ Pþ Fe þ Nx
@2w
@x2 þ Ny

@2w
@y2

ð15Þ

where ρe and he are the equivalent density and thickness of the whole
microplate (given in Eqs. (A.5) and (A.6) in Appendix A); P is hydro-
static pressure, and Fe is the electrostatic force which is given by:

Fe ¼ ɛ0V2

2 d0 � wð Þ2 ð16Þ

and ε0 is the permittivity of the vacuum; V is the sum of the applied DC
and AC voltages, which can be expressed as:

V ¼ VDC þ VACðtÞ ð17Þ
Assuming that the residual stress Nx and Ny are equal to each other

[56] and substituting Eq. (12) into Eq. (15), the deflection governing
equation can be rewritten as:

Dx
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¼ Pþ ɛ0V2
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@y2 Þ ð18Þ

where Dx, Dk, Dy and N are given as:

Dx ¼ D11; Dy ¼ D22;

Dk ¼ D12 þ 2D66;

N ¼ Nx ¼ Ny ;

ð19Þ

and w can be given as:

wðx; y; tÞ ¼ wDCðx; yÞ

þ wACðx; y; tÞ ¼ ∑
M1

i;j¼0
bijϕijðx; yÞ þ ∑

M2

l;m¼0
λlmηlmðx; yÞsinðωt þ φÞ

ð20Þ
where wDC(x, y) represents the static deflection under the applied DC
voltage, and wAC (x, y, t) is the vibration around the static deflection,
induced by the applied AC voltages; ϕij and ηij represent the trail func-
tions for static deflection and vibrations, respectively; bij and λij are the
coefficients to be determined, and φ is the initial phase angle.

As clamped rectangular multilayer anisotropic microplates are con-
cerned in this study, the deflection function w(x, y, t) should satisfy the
following boundary conditions:

wðx; y; tÞ ¼ 0 and dwðx;y;tÞ
dx ¼ 0 at x ¼ �a

wðx; y; tÞ ¼ 0 and dwðx;y;tÞ
dy ¼ 0 at y ¼ �b

ð21Þ
3. Static behavior analysis

3.1. Static deflection

To analyze the static deflection under DC voltage, residual stress
and hydrostatic pressure, we established a reduced‐order model for
Eq. (18) with the time‐related terms eliminated. The trail functions
4

used to model the deformation shape of the rectangular anisotropic
microplate are chosen as:

ϕi j ¼ cos2
ð2iþ 1Þπx

2a

� �
cos2

ð2jþ 1Þπy
2b

� �
; i; j ¼ 0; 2; 4 � � � ð22Þ

where i and j evennumbers. Subsequently, substitutingEqs. (20) and (22)
into Eq. (18), taking a partial expansionmethod to approximate the elec-
trostatic force (see Eq. (B.1) for the approximation method in Appendix
B) and multiply both sides with (d0‐wDC) and ϕkl, a reduced‐order model
for the static deflection analysis can be obtained as:
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ð23Þ

As such, a closed‐form expression for the static deflection can be
derived from Eq. (23) by using both first‐order terms of the trail func-
tions and electrostatic force expansions, which is obtained as:

wDC ¼Aþ9a4b4ðP�QÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Aþ9a4b4ðP�QÞ�2 �32a4b4π2d0ðPþQÞB

q
π2B

cos2
πx
2a

� �
cos2

πy
2b

� �
ð24Þ

where

Q ¼ ɛ0V2
DC

2d20
ð25Þ

A ¼ 3π2a2b2ða2 þ b2Þd0N þ π4ð3a4Dy þ 2a2b2Dk þ 3b4DxÞd0 ð26Þ
and

B ¼ 5a2b2ða2 þ b2ÞN þ π2ð5a4Dy þ 4a2b2Dk þ 5b4DxÞ ð27Þ
3.2. Pull-in voltage

The pull‐in phenomenon occurs when the deflection, wDC, reaches
its maximum value, which represents the critical pull‐in position. Set-
ting the third term in the numerator of Eq. (24) to be zero and evalu-
ating the resultant equation, the pull‐in voltage of electrostatically
actuated rectangular multilayer anisotropic microplates under residual
stress and hydrostatic pressure can be obtained as:

Vpi ¼
d0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
18Aþ162a4b4Pþ32π2d0B�8π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d0Bð18Aþ324a4b4Pþ16π2d0BÞ

qr
9a2b2

ffiffiffiffiffi
ɛ0

p

ð28Þ
4. Resonant frequency for small-amplitude vibrations

To analyze the resonant frequencies of the multilayer anisotropic
microplate under DC and AC voltages, as well as residual stress and
hydrostatic pressure, we used the same trail functions as Eq. (22) to
simulate the mode shape, that is:

ηlmðx; yÞ ¼ cos2
ð2lþ 1Þπx

2a

� �
cos2

ð2mþ 1Þπy
2b

� �
; l; m

¼ 0; 2; 4 � � � ð29Þ
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For small‐amplitude vibrations, the applied DC voltage is much lar-
ger than the AC voltage [5,21,24,31,33,35]. Therefore, substituting
Eqs. (29) and (20) into Eq. (18) and eliminating the time‐
independent terms in the resultant equation, then expanding the elec-
trostatic force at (wDC, VDC) and eliminating those higher‐order terms,
a simplified equation determining the resonant frequency is obtained
as:

Dx
@4wAC

@x4 þ 2Dk
@4wAC

@x2@y2 þ Dy
@4wAC

@x4 þ ρehe
@2wAC

@t2

¼ ɛ0V2
DC

ðd0 � wDCÞ3
wAC þ Nð@

2wAC

@x2 þ @2wAC

@y2
Þ ð30Þ

To obtain a closed‐form solution, a reduced‐order model is estab-
lished by using the same method as that for Eq. (23), but where the
VDC‐included term in Eq. (30) is approximated by Eq. (B.2) in Appen-
dix B. As such, the model for the small‐amplitude vibration can be
obtained as:

∑
M2

l;m¼0
λlm
RR� ðDx

@4ηlm
@x4 þ2Dk

@4ηlm
@x2@y2 þDy

@4ηlm
@y4 Þ -ω2ρeheηlm

� �
ðd0�w2

DCÞ2ηijdxdy� sinðωt þ φÞ

¼ ɛ0V2
DC

d0
∑
M2

l;m¼0
λlm
RR�ηlmηijdxdyþ 1

d0
∑
M2

l;m¼0
λlm
RR�wDCηlmηijdxdy

 

þ 1
d20

∑
M2

l;m¼0
λlm
RR�w2

DCηlmηijdxdyþ���
!
sinðωt þ φÞ þN

RR�r2wAC�ðd0�w2
DCÞ2ηijdxdy

l;m; i; j¼ 0;2;4 � � �
ð31Þ

where

r2wAC ¼ @2wAC

@x2 þ @2wAC

@y2
ð32Þ

Subsequently, a solution to the angular frequency can be derived
from Eq. (31) by using both first‐order terms of the expanded electro-
static force and trail functions, as being:

ω ¼ 1
ra2

½r2π4HDx þ 2π4ð225C2 - 512Cd0 þ 256d20ÞDk þ r�2π4HDy
	

þð1þ r2Þπ2a2HN�128r2a4ð25C þ 36d0ÞQ�=
ð1225C2 � 3200Cd0 þ 2304d20Þheρe�
� 
1=2 ð33Þ

where r = b/a,

H ¼ 525C2 � 1280Cd0 þ 768d20 ð34Þ
and

C ¼ fA� ½A2 � 32π2r4a8d0ðPþ QÞB�1=2g=ðπ2BÞ ð35Þ
Finally, a closed‐form expression for the resonant frequency of elec-

trostatically actuated multilayered anisotropic microplates under
residual stress and hydrostatic pressure can be rewritten as:

f ¼ 1
2πra2

½r2π4HDx þ 2π4ð225C2 - 512Cd0 þ 256d20ÞDk þ r�2π4HDy
	

þ ð1þ r2Þπ2a2HN�128r2a4ð25C þ 36d0ÞQ�=½ð1225C2 � 3200Cd0

þ2304d20Þheρe�

1=2 ð36Þ

Eqs. (24), (28) and (36) can also be applied to the analysis of the
corresponding mechanical behavior analyses of electrostatically actu-
ated multilayer microplates with isotropic material properties where
Dx, Dy and Dk are equal to each other.

5. Analysis accuracy and generality evaluation of closed-form
expressions

5.1. Accuracy and generality study using FEM simulations

To analyze the accuracy and generality of our closed‐form expres-
sions, we established a 3D electromechanical coupling model for a
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square anisotropic microplate using ANSYS 15.0. SOLID185 and
TRANS126 elements were used to model the microplate and elec-
tromechanical coupling field between the top and bottom electrodes,
respectively. The material of the plate was assumed to be (100) sili-
con, and the coordinate system of the plate was aligned with the prin-
cipal material directions of the silicon, [110] directions, to directly
use its elastic constants as shown in Table 1. The meshing number
was optimized to obtain reliable numerical results (about 0.05% rela-
tive difference between the results of two different meshings with 100
element difference). Static and pre‐stressed modal analyses were per-
formed to obtain numerical solutions to the deflections, pull‐in volt-
ages and resonant frequencies under different electrostatic forces,
residual stresses and hydrostatic pressures. The dimensions of the stud-
ied electrostatically actuated microplate were 60 μm in width, 1 μm in
thickness and 0.6 μm in gap distance.

To demonstrate the necessity of taking the material anisotropy into
account in the analysis of the mechanical behaviors of electrostatically
actuated anisotropic microplates, we compared the deflection, reso-
nant frequency and pull‐in voltage calculated using anisotropic elastic
constants with those calculated using the isotropic ones frequently
used in previous analyses [52]. We observed that the theoretical
results using anisotropic elastic constants almost overlapped with
those from the FEM simulations (Fig. 3a‐i and b‐i), showing the max-
imum relative differences of 3.4% and 4.5% for the static deflection
and resonant frequency at the DC voltages up to 96% of the pull‐in
voltages (Fig. 3a‐ii and b‐ii), respectively. However, the theoretical
deflections (resonant frequencies) based on the isotropic elastic con-
stants show the maximum difference of over 47% (73%) from the
FEM simulation results, which is 10 (15) times larger than that of those
based on the anisotropic elastic constants (Fig. 3a‐ii and b‐ii). Addi-
tionally, a comparison of the pull‐in voltage indicates our closed‐
form expressions could contribute to at least 5 times improvement in
the analysis accuracy compared with that without consideration of
the material anisotropy (Table 2). These results demonstrate that con-
sidering material anisotropy in theoretical analysis can significantly
improve the analysis accuracy of these mechanical parameters of elec-
trostatically actuated anisotropic microplates.

Subsequently, to evaluate their accuracy and applicability to a wide
dimension range of electrostatically actuated anisotropic microplates,
we conducted a parametric study on the derived closed‐form expres-
sions by changing one dimension and keeping the others fixed. We first
changed the length of the square anisotropic microplate from 20 μm to
100 μm. The resultant pull‐in voltages showed a maximum relative dif-
ference of 1.65% from the numerical results within the length‐to‐
thickness ratios of 20 to 100 (Fig. 4a). The static defections and reso-
nant frequencies showed maximum relative differences of 4.5% and
5.8% at the DC voltages up to 96% of the pull‐in voltages within the
length‐to‐thickness ratios of 20 to 80 (Tables 3 and 4). The maximum
relative differences for the static defection and resonant frequency
increased to 8.8% and 11% at the length‐to‐thickness ratio of 100. This
could be the limit of the applicable dimension range of the closed‐form
expressions because, above that, the microplate behaves actually like a
membrane, and the middle‐plane stretching effect dominates the
mechanical behaviors.

Further, we compared the pull‐in voltages, static deflection and res-
onant frequencies of the anisotropic microplate under different gap
distance‐to‐thickness ratios. The pull‐in voltages showed a maximum
relative difference of 1.67% within the gap‐to‐thickness ratio range
less than 2 (Fig. 4b). The static defections and resonant frequencies
showed maximum relative differences of 3.8% and 4.5%, respectively,
at the DC voltages up to 96% of pull‐in voltages within the same
dimension range (Table 5 and 6). These results demonstrate that the
closed‐form expressions have high accuracy in the mechanical behav-
ior analyses of electrostatically actuated anisotropic microplates
within a wide dimension range.



Table 1
The elastic constants of (100) silicon with inclusion and exclusion of its material anisotropy [45,52].

Young’s Modulus (GPa) Shear Modulus (GPa) Passion’s ratio Density (kg/m3)

Isotropic [10 0] 130 (E) E/[2(1 + v)] 0.28 (v) 2332
Isotropic [110] 169 (E) E/[2(1 + v)] 0.064 (v) 2332
Anisotropic 169 (Ex) 50.9 (Gxy) 0.064 (vxy) 2332

169 (Ey) 79.6 (Gyz) 0.36 (vyz)
130 (Ez) 79.6 (Gzx) 0.28 (vzx)

Fig. 3. Comparisons of the static deflections and resonant frequencies of the electrostatically actuated microplate between using anisotropic elastic constants and
using isotropic elastic constants in [110] and [100] directions. (a) Static deflection comparison, where the numerical results from FEM simulations were used as a
reference for error analysis; i) the static deflections under different voltages; ii) the relative error between the theoretical analysis and FEM simulations. (b)
Resonant frequency comparison and error analysis; i) the resonant frequencies under different voltages; ii) relative error analysis.

Table 2
Pull-in voltages of the electrostatically actuated anisotropic microplate with/without the material anisotropy considered.

Source Anisotropic (FEM) Anisotropic (analytical) Isotropic [110] (analytical) Isotropic [100] (analytical)

Pull-in voltage (V) 92.4 91.8 95.4 87.0
Rel. error – 0.6% 3.2% 5.8%
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We further evaluated the ability of our closed‐form expressions to
predict the mechanical behaviors of the electrostatically actuated ani-
sotropic microplate under different residual stresses and hydrostatic
pressures by changing one load and keeping the others fixed (i.e. fixing
the DC voltage and pressure or fixing the DC voltage and residual
stress). The comparisons showed that both analytical results under dif-
ferent residual stresses and different pressures had excellent consis-
tence with the numerical ones. For example, within the studied
residual stress range of−120 MPa to 120 MPa, the corresponding ana-
lytical and numerical solutions to pull‐in voltages overlapped with
6

each other, showing a maximum relative difference of 1.7%
(Fig. 5a). The theoretical deflections and resonant frequencies agreed
well with those numerical ones, showing the maximum difference of
4.0% and 4.3%, respectively (Fig. 5b and 5c). Furthermore, the theo-
retical results of static deflections, resonant frequencies and pull‐in
voltages under different pressures (i.e. 0 to 120 kPa) also agreed well
with the numerical results (Table 7). These results demonstrate that
our closed‐form expressions have high accuracy in the analysis of
the mechanical parameters of electrostatically actuated anisotropic
microplates under different residual stresses and hydrostatic pressures.



Table 3
Comparison of the maximum displacements under different length-to-thickness ratios, 2a/he, (μm).

2a/he Source VDC/VPI

0.2 0.4 0.6 0.8 0.9 0.94 0.96

20 FEM 0.0053 0.0220 0.0531 0.1077 0.1537 0.1809 0.1988
Analytical 0.0052 0.0217 0.0526 0.1073 0.1529 0.1790 0.1953

40 FEM 0.0054 0.0222 0.0536 0.1087 0.1554 0.1833 0.2019
Analytical 0.0054 0.0223 0.0542 0.1111 0.1597 0.1884 0.2071

60 FEM 0.0054 0.0226 0.0546 0.1112 0.1601 0.1901 0.2109
Analytical 0.0055 0.0228 0.0555 0.1143 0.1656 0.1969 0.2181

80 FEM 0.0054 0.0225 0.0545 0.1109 0.1593 0.1889 0.2092
Analytical 0.0055 0.0228 0.0555 0.1145 0.1659 0.1973 0.2186

100 FEM 0.0054 0.0224 0.0541 0.1098 0.1573 0.1858 0.2048
Analytical 0.0055 0.0230 0.0560 0.1157 0.1681 0.2006 0.2230

Table 4
Comparison of the resonant frequencies under different length-to-thickness ratios, 2a/he, (Hz).

2a/h Source VDC/VPI

0.2 0.4 0.6 0.8 0.9 0.94 0.96

20 FEM 32,940,516 32,353,137 31,138,067 28,510,016 25,560,063 23,318,359 21,539,772
Analytical 34,679,164 33,942,734 32,433,349 29,267,807 25,955,351 23,674,765 22,050,630

40 FEM 8,337,044 8,186,079 7,873,469 7,194,804 6,425,442 5,830,961 5,348,865
Analytical 8,668,316 8,478,881 8,088,062 7,253,835 6,347,542 5,688,726 5,189,721

60 FEM 3,713,356 3,644,712 3,501,926 3,187,879 2,820,701 2,521,864 2,261,339
Analytical 3,852,049 3,765,910 3,587,234 3,200,098 2,765,157 2,431,595 2,160,705

80 FEM 2,092,350 2,053,742 1,973,486 1,797,312 1,592,383 1,427,389 1,286,361
Analytical 2,166,763 2,118,258 2,017,617 1,799,401 1,553,827 1,374,442 1,210,971

100 FEM 1,348,332 1,323,624 1,272,361 1,160,442 1,032,054 931,341 848,745
Analytical 1,386,659 1,355,363 1,290,300 1,148,448 986,744 859,606 752,558

Fig. 4. Comparisons of pull-in voltages under different dimension ranges (a) Comparison of pull-in voltages under different width-to-thickness ratios, 2a/he; i)
Pull-in voltages obtained using Eq. (28) and FEM simulations; ii) Relative error between theoretical analysis and FEM simulations. (b) Comparison of pull-in
voltages with different gap distance-to-thickness ratios, d0/he; i) Pull-in voltages; ii) relative error analysis.
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Table 5
Comparison of the maximum displacement under gap distance-to-thickness ratios less than 2, (μm).

d0/he Method VDC/VPI (%)

20 40 60 80 90 94 96

0.2 FEM 0.0018 0.0077 0.0187 0.0382 0.0552 0.0659 0.0732
Analytical 0.0019 0.0078 0.0190 0.0395 0.0577 0.0695 0.0780

0.4 FEM 0.0036 0.0149 0.0359 0.0729 0.1044 0.1233 0.1359
Analytical 0.0036 0.0150 0.0365 0.0750 0.1081 0.1279 0.1410

0.6 FEM 0.0054 0.0226 0.0546 0.1112 0.1601 0.1901 0.2109
Analytical 0.0055 0.0228 0.0555 0.1143 0.1656 0.1969 0.2181

0.8 FEM 0.0071 0.0296 0.0714 0.1447 0.2069 0.2439 0.2685
Analytical 0.0072 0.0298 0.0725 0.1487 0.2139 0.2526 0.2778

1.0 FEM 0.0089 0.0369 0.0890 0.1803 0.2569 0.3033 0.3336
Analytical 0.0089 0.0372 0.0903 0.1852 0.2662 0.3140 0.3451

1.2 FEM 0.0106 0.0441 0.1065 0.2157 0.3077 0.3622 0.3981
Analytical 0.0107 0.0445 0.1081 0.2215 0.3182 0.3750 0.4118

1.4 FEM 0.0124 0.0515 0.1242 0.2516 0.3590 0.4225 0.4643
Analytical 0.0125 0.0519 0.1261 0.2584 0.3711 0.4374 0.4803

1.6 FEM 0.0142 0.0588 0.1418 0.2871 0.4095 0.4818 0.5293
Analytical 0.0142 0.0592 0.1439 0.2948 0.4234 0.4988 0.5476

1.8 FEM 0.0159 0.0661 0.1595 0.3229 0.4606 0.5418 0.5952
Analytical 0.0160 0.0666 0.1619 0.3316 0.4762 0.5610 0.6158

2.0 FEM 0.0177 0.0734 0.1770 0.3584 0.5111 0.6010 0.6601
Analytical 0.0178 0.0740 0.1797 0.3681 0.5283 0.6223 0.6829

Table 6
Comparison of the resonant frequencies under gap distance-to-thickness ratios less than 2 (Hz).

d0/he Method VDC/VPI (%)

20 40 60 80 90 94 96

0.2 FEM 3,712,823 3,642,248 3,494,502 3,163,829 2,762,940 2,420,095 2,107,874
Analytical 3,851,391 3,762,856 3,577,972 3,169,694 2,689,669 2,290,222 1,920,881

0.4 FEM 3,713,598 3,645,835 3,505,352 3,199,338 2,849,838 2,577,016 2,353,636
Analytical 3,852,362 3,767,361 3,591,604 3,214,123 2,798,413 2,489,776 2,249,780

0.6 FEM 3,713,356 3,644,712 3,501,926 3,187,879 2,820,701 2,521,864 2,261,339
Analytical 3,852,049 3,765,910 3,587,234 3,200,098 2,765,157 2,431,595 2,160,705

0.8 FEM 3,713,740 3,646,484 3,507,262 3,205,277 2,863,565 2,600,330 2,387,779
Analytical 3,852,519 3,768,087 3,593,780 3,221,036 2,814,476 2,517,126 2,290,222

1.0 FEM 3,713,802 3,646,770 3,508,101 3,207,888 2,872,723 2,610,947 2,403,888
Analytical 3,852,586 3,768,398 3,594,712 3,223,984 2,821,261 2,528,543 2,306,862

1.2 FEM 3,713,860 3,647,030 3,508,864 3,210,251 2,875,170 2,620,450 2,418,229
Analytical 3,852,647 3,768,678 3,595,551 3,226,626 2,827,312 2,538,658 2,321,492

1.4 FEM 3,713,871 3,647,081 3,508,994 3,210,568 2,875,754 2,621,312 2,419,376
Analytical 3,852,650 3,768,694 3,595,598 3,226,774 2,827,649 2,539,220 2,322,303

1.6 FEM 3,713,902 3,647,218 3,509,386 3,211,731 2,878,365 2,625,729 2,425,939
Analytical 3,852,677 3,768,819 3,595,972 3,227,952 2,830,336 2,543,690 2,328,733

1.8 FEM 3,713,914 3,647,269 3,509,519 3,212,058 2,878,976 2,626,647 2,427,188
Analytical 3,852,681 3,768,836 3,596,022 3,228,110 2,830,697 2,544,290 2,329,595

2.0 FEM 3,713,940 3,647,384 3,509,843 3,213,001 2,881,058 2,630,133 2,432,328
Analytical 3,852,702 3,768,932 3,596,312 3,229,020 2,832,768 2,547,727 2,334,522
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5.2. Experimental validation of closed-form expressions

In the last section, we evaluated the analysis accuracy and the gen-
erality of our closed‐form expressions using FEM simulations. Herein,
CMUTs with a three‐layer vibrating microplate were fabricated to
experimentally verify the theoretical expressions. As shown in Fig. 6
(a) and (b), the vibrating microplate consists of the (100) silicon,
SiO2 and aluminum layers with a gap distance of d0, which has an ini-
tial deflection of 0.113 μm caused by the co‐action of residual stress
and atmospheric pressure (see Table C1 for the tested structure param-
eters in Appendix C). Fig. 6 (c) and (d) show the comparisons of the
static deflections and resonant frequencies of the CMUTs between
experimental and theoretical results, under different DC voltages and
a fixed pressure of 0.1 MPa and initial residual stress of 140 Mpa
(see Appendix C for the testing method for the experimental data
and calculation of the theoretical results). Both experimental results
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of the defection and resonant frequency show good consistence with
their theoretical results, with the maximum differences of 6.3% in
the resonant frequency analysis. Furthermore, the theoretical pull‐in
voltage (53 V) agreed well with the measured pull‐in voltage (more
than 47 V). The differences of the theoretical results from the experi-
mental ones are larger than those from the FEM simulations demon-
strated in previous sections. The increased difference could be
caused by the electrode charging problem in CMUTs, which can cause
an external positive or negative voltage superimposed on the applied
DC voltages and result in a larger difference in deflection and resonant
frequency than the expected value [57]. The difference can be further
reduced by eliminating the electrode charging problem or by estimat-
ing the caused external voltages. Taken together, the above results
experimentally validated the capability of our closed‐form expressions
in the mechanical parameter analysis of electrostatically actuated mul-
tilayer anisotropic microplates.



Table 7
Comparisons of the maximum deflections, resonant frequencies and pull-in voltages under different pressures with a fixed VDC of 20% VPI.

Mechanical variable Method Pressure (kPa)

0 20 40 60 80 100

Deflection (μm) FEM 0.00544 0.0314 0.0574 0.0834 0.110 0.136
Analytical 0.00546 0.0319 0.0592 0.0876 0.117 0.148

Resonant frequency (Hz) FEM 3,713,356 3,711,290 3,708,889 3,706,081 3,702,773 3,698,840
Analytical 3,698,840 3,819,257 3,782,297 3,740,161 3,691,437 3,634,045

Pull-in voltage (V) FEM 92.4 88.0 82.8 78.0 73.4 64.7
Analytical 91.8 86.8 81.6 76.3 70.7 68.0

Fig. 5. Comparison of the pull-in voltages, deflections and resonant frequencies of the electrostatically actuated microplates between analytical and numerical
results under different residual stresses, where the basic dimensions mentioned before were used. (a) Pull-in voltage comparison under different residual stresses at
a fixed pressure of 0 Pa; i) the analytical and numerical solutions to pull-in voltages; ii) the relative error analysis. (b) Static deflection comparison; i) the analytical
and numerical solutions to deflections under different residual stress with a fixed DC voltage of 18.84 V and a fixed pressure of 0 Pa; ii) the relative error analysis.
(c) Resonant frequency comparison; i) the analytical and numerical solutions to resonant frequencies under different residual stresses, but the same voltage and
pressure as the deflection analysis; ii) relative error analysis.
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6. Discussion

6.1. Electrostatic softening effects

The parametric study in Section 5.1 shows that the closed‐form
expression based on the CLTP theory has high accuracy in the
analysis of the deflection of electrostatically actuated microplates,
even when the deflection increases up to its thickness. However,
for microplates under common forces such as pressure and stress,
the analysis error generally becomes larger than 5% as the deflec-
tion reaches above 20% of its thickness because of the increased
middle‐plane stretching [58,59]. To understand this phenomenon,
we further studied the stiffness variations of electrostatically actu-
ated microplates with/without consideration of the middle‐plane
stretching effects. We first derived the stiffness of a square aniso-
tropic microplate from its deflection under hydrostatic pressure
(Eq. (D.1) in Appendix D) by:

Dðx; yÞ ¼ dP
dw

¼ ð3Dy þ 2Dk þ 3DxÞπ4

16a4cos2 πx
2a

� �
cos2 πy

2a

� � ð37Þ

Subsequently, the stiffness including the electrostatic softening
effects can be given by differentiating the resultant force acting on
the microplate to its deflection as:
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Deffðx; yÞ ¼ dFðx; yÞ
dw

¼ Dðx; yÞ � ɛ0V2
DC

½d0 � wðx; yÞ�3 ð38Þ

where F(x, y) is the resultant force of the restoring force and the applied
electrostatic force, given as:

Fðx; yÞ ¼ Dðx; yÞwðx; yÞ � ɛ0V2
dc

2½d0 � wðx; yÞ�2 ð39Þ

Setting N = 0, and a = b in Eq. (24), and substituting the resulting
equation as well as Eq. (37) into Eq. (38), the stiffness of electrostati-
cally actuated anisotropic microplate can be derived as:

Deffðx; yÞ ¼ ð3Dy þ 2Dk þ 3DxÞπ4

16a4cos2 πx
2a

� �
cos2 πy

2a

� � � ɛ0V2
DC

d0 � w0cos2 πx
2a

� �
cos2 πy

2a

� �� �3
¼ D0

1
cos2 πx

2a

� �
cos2 πy

2a

� �� ɛ0V2
DC

D0 d0 � w0cos2 πx
2a

� �
cos2 πy

2a

� �� �3
" #

ð40Þ

where, w0 is the deflection at the center point (0, 0), and D0 is given as:

D0 ¼ ð3Dy þ 2Dk þ 3DxÞπ4

16a4
ð41Þ

Both Eqs. (39) and (40) show the distributed stiffness over the plate
area, which varies in the form of the function defined by cos2 [πx/
(2a)]cos2[πy/(2a)]. The difference is that the stiffness of the common



Fig. 6. Experimental validation of the closed-form expressions using our fabricated CMUTs with a square anisotropic microplate composed of three layers. (a) The
structure schematic; (b) SEM picture of the cross-section of a CMUT cell; (c) Comparison of the static deflections under different DC voltages; (d) Comparison of the
resonant frequencies under different DC voltages.

Z. Li et al. Composite Structures 255 (2021) 112964
microplate remains constant during the deflection process, but the
stiffness of the electrostatic microplate decreases with its deflection
(electrostatic softening effects). To clearly understand this point, we
further studied the stiffness at the center point by setting x, y in Eq.
(40) to be zero, thus, which can be simplified as:

Deffðx; yÞ ¼ D0 1� ɛ0V2
DC

D0 d0 � w0ð Þ3
" #

ð42Þ

Further, to include the effect of the middle‐plane stretching [58],
the effective stiffness can be rewritten as:

Deff ¼ D0 1 þ C
w2

0

h2e
� ɛ0V2

DC

D0 d0 � w0ð Þ3
" #( )

ð43Þ

where the term, Cw2
0/he2, represents the effect of the middle‐plane

stretching on the plate stiffness (in other words, the stress‐stiffening
effects), and C is a coefficient to be determined. Eq. (43) shows that,
for electrostatically actuated microplates, the stress‐stiffening effect is
weakened by the electrostatic‐softening effects. Further, a parametric
study on the effective stiffnesses of an electrostatic microplate shows
that the stiffness with only the stress‐stiffening effects considered,
increasing with w0/he, is larger than that without the stress‐stiffening
effects considered, Ds; however, the stiffness with both stress‐
stiffening and electrostatic‐softening effects considered, decreasing
with w0/he, is smaller than Ds, even when the deflection reaches its
thickness (Fig. 7a). The softened stiffness can decrease the induced
stress in the middle‐plane, resulting in reduced stress‐stiffening effects
and thus reducing the difference between the defection analyses with
and without consideration of the middle‐plane stretching. This means,
for electrostatic microplates, the CLTP theory can apply to a larger
deflection range than that for microplates under no action of electro-
static force, without degrading the analysis accuracy. For example,
the deflections from FEM simulations, where the stress‐stiffening effects
were turned on/off, overlapped with each other and showed a small dif-
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ference of 0.7% at the deflection equal to its thickness (Fig. 7b). These
results indicate that the CLTP theory can be used for the deflection
analysis of electrostatic microplates in an extended range (equal to
the thickness).

6.2. Scale effects

The study in above sections has demonstrate the applicability of the
closed‐form expressions across a wide range of dimension ratios (i.e.
the length‐to‐thickness ratios), but without evaluating the applicable
minimum dimension size. In fact, the intrinsic material length scale
parameter has been proved to be an inevitable factor affecting the
mechanical behavior of microplates when it is comparable to the plate
dimension size such as the length or thickness [39,60]. Herein, the
influence of the scale effects on the analysis accuracy is discussed in
order to further estimate the applicable minimum dimension size of
the developed closed‐form expressions. For this purpose, simplified
closed‐form expressions (Eqs. (D.2), (D.3) and (D.4) in Appendix D)
for the static deflection, pull‐in voltage and resonant frequency were
constructed based on isotropic microplates with the pressure and
residual stress set to be zero. Taking advantage of these expressions,
we compared the analytical results of the aforementioned mechanical
behaviors under different material length scale parameters between
using the stiffnesses neglecting (Ds) and considering (Ds

l) the scale
effects, where the Ds

l can be given based on a modified couple stress
theory [61] as:

Dl
s ¼ Ds 1þ 6ð1� vÞ l

2

h2e

" #
ð44Þ

where l and v are the length‐scale parameter and Poisson's ratio of the
used material of the microplate, respectively. As shown in Fig. 8a–c, the
results considering the scale effects overlap with those neglecting the
scale effects under a certain range of the material length‐scale parame-



Fig. 7. Effective stiffness of an electrostatically actuated microplate under different conditions and comparison of the deflections with/without the inclusion of the
stress-stiffening effects. (a) Effective stiffness under different deflection-to-thickness ratios, which was compared with that of the microplate without the action of
electrostatic force; The effective stiffness was calculated by substituting the dimensionless deflection expression (Eq. (D.2) in Appendix D) and the stiffness Ds into
Eqs. (42) and (43); the coefficient C for the stress-stiffening effect was derived from [58], which was 0.532; Ds represents the stiffness of an isotropic microplate
without the stress-stiffening effects considered, and De represents the electrostatic softening effect, expressed by the VDC-related term in Eq. (43); (b) The
deflections of an electrostatically actuated square microplate with inclusion and exclusion of the stress-stiffness effects obtained using FEM simulations, where the
basic dimensions in Section 5.1 were used.

Fig. 8. Effects of material length-scale parameter on the analysis accuracy of the developed closed-form expressions. (a) Comparison of the pull-in voltages
between neglecting and considering the scale effects. (b) Comparison of the defections beween neglecting and considering the scale effects; i) deflections under
under different DC voltages; ii) relative errors. (c) Comparison of the resonant frequencies between neglecting and considering the scale effects; i) Resonant
frequencies under different DC voltages; ii) relative errors. The VPI in (b) and (c) is the pull-in voltage without the scale effects taken into account.
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ter to plate thickness ratio, l/he, while deviate significantly when the
length‐scale parameter increases. For the pull‐in voltage, the differ-
ences between the analytical results with and without the scale effects
considered is less than 5% when l/he < 0.16 (Fig. 8a‐ii). The differ-
ences in the static deflection (resonant frequency) analyses are less than
7.3% when l/he < 0.10 (6.8% when l/he < 0.20) at a DC voltage of
90% VPI, however, which decreases rapidly to 4.6% (0.8%) at a reduced
DC voltage of 50% VPI (Fig. 8b‐ii and c‐ii). These results demonstrate
that the influences of the scale effects on the static deflection, pull‐in
voltage and resonant frequency analyses are neglectable at l/he <
0.10, 0.16 and 0.20, respectively, indicating the applicable minimum
11
dimension sizes of the developed closed‐form expressions. For electro-
static multilayer anisotropic microplates with lower dimension sizes,
new modified couple stress theories considering the anisotropic elastic-
ity can be introduced into the developed theories for accurate analysis
of the scale effects [62,63].

7. Conclusions

In summary, we propose a general reduced‐order model for electro-
statically actuated rectangular microplates, which considers the mate-
rial anisotropy and multilayer properties simultaneously. Closed‐form



Table C1
Measured structure parameters of our fabricated CMUTs.

Parameters Value Parameters Value

Plate length (2a/2b) 122.6 μm Aluminum electrode (ta) 0.41 μm
Thickness of silicon plate (ts) 2.0 μm Bottom insulation layer (ti) 0.10 μm
Top insulation layer (to) 0.20 μm Vacuum cavity (d0) 0.48 μm
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expressions for their pull‐in voltage, static deflection and resonant fre-
quency under residual stress and hydrostatic pressure are derived from
this model. Analysis accuracy and general applicability of these expres-
sions are validated using FEM simulations and experiment results of
CMUTs. It is demonstrated that: 1) the closed‐form expressions consid-
ering the material anisotropy can significantly improve the analysis
accuracy (more than 15 times) compared with those neglecting the
material anisotropy; 2) they can apply to a wide range of dimensions,
i.e. within the length‐to‐thickness ratio of 20–100 and the distance‐to‐
thickness ratio of ~2; 3) the closed‐form expressions have high accu-
racy across almost the whole voltage range (i.e. from 0 to 96% of
pull‐in voltage), even when the deflection goes up to its thickness; 4)
these expressions can also predict those mechanical parameters under
different residual stresses within 4.3% difference from FEM simula-
tions. For the effect of hydrostatic pressure, these expressions show
high accuracy in a low‐pressure range, which decreases with the
increased pressure. For this, new methods need to be developed in
the future. Additionally, the influence of electrostatic softening effects
and scale effects are studied to look into the underlying reason of the
high analysis accuracy and the applicable minimum dimension sizes of
the developed closed‐form expressions, respectively. The developed
closed‐form expressions in this study, more general and accurate than
those based on isotropic material properties and single‐layer micro-
plates, can be widely used in the design and optimization of various
MEMS sensors and actuators.
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Appendix A

The matrixes T−1 and T‐T for the transformation of the stiffness
matrix Q̃k are given as [54]:

T�1 ¼
cos2θk sin2θk �2sinθkcosθk

sin2θk cos2θk 2sinθkcosθk

sinθkcosθk �sinθkcosθk cos2θk � sin2θk

2
64

3
75 ðA1Þ

and

T�T ¼ RTR�1 ðA2Þ
where the matrix T can be given as:

T ¼
cos2θk sin2θk 2sinθkcosθk

sin2θk cos2θk - 2sinθkcosθk

- sinθkcosθk sinθkcosθk cos2θk � sin2θk

2
64

3
75 ðA3Þ

and the matrix R is:

R ¼
1 0 0
0 1 0
0 0 2

2
64

3
75 ðA4Þ

and R−1 is the inverse of the matrix R.
The equivalent density and thickness of anisotropic microplates

with n layers shown in Fig. 1 can be calculated by:

ρe ¼
h1ρ1 þ h1ρ2 � � � þ hnρn

h1 þ h2 � � � þ hn
ðA5Þ

he ¼ h1 þ h2 � � � þ hn ðA6Þ
Appendix B

Using the partial expansion method in [49], the electrostatic force
given in Eq. (16) can be approximated as:

FeðwÞ ¼ ɛ0V2
DC

2ðd0 � wDCÞðd0 � wDCÞ

¼ ɛ0V2
DC

2d0ðd0 � wDCÞ 1þ wDC

d0
þ w2

DC

d20
þ w3

DC

d30
þ � � �

 !
ðB1Þ

The VDC‐related term on the right side of Eq. (30) can be approxi-
mated using a similar partial expansion method in [51]as:

ɛ0V2
DC

ðd0 � wDCÞ3
wAC ¼ ɛ0V2

DC

ðd0 � wDCÞ2ðd0 � wDCÞ
wAC≈

ɛ0V2
dc

d0ðd0 � wDCÞ2

1þ wDC

d0
þ w2

DC

d20
þ w3

DC

d30
þ � � �

 !
wAC

ðB2Þ
Appendix C

The experimental results of the deflections, pull‐in voltages and res-
onant frequencies of the CMUTs chips were measured using a white‐
light interference microscope (Talysurf CCI6000, Taylor Hobson Ltd.,
UK) and an impedance analyzer (E4990A, Agilent Technologies, Inc.,
USA). The DC voltages were applied using a SourceMeter (Keithley
2612A, Tektronix Inc., USA). The theoretical results of these mechan-



Table C2
Material properties of the SiO2 and aluminum used for the mechanical behavior analysis of CMUTs.

Source Young’s modulus (GPa) Passion’s ratio Density (kg/m3) Relative permittivity

SiO2 (isotropic) 73.1 0.17 2270 3.8
Aluminum (isotropic) 67.7 0.35 2700 –
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ical parameters were calculated using Eqs. (24), (28) and (36) under
the pressure of 0.1 MPa and residual stress of 140 MPa. In the theoret-
ical analysis, the atmospheric pressure and the residual stress were
applied because they were considered as the main factors inducing
the initial deflection of the microplate. The residual stress was deter-
mined using a 3D FEM model of the CMUTs based on the tested initial
deflection (0.113 μm) with SOLID185 elements to simulate the layered
vibrating microplates. Besides, the equivalent density ρe and thickness
he of the multilayer microplate were obtained using Eqs. (A.5) and
(A.6), respectively, and the effective electrode distance, de, can be cal-
culated using Eq. (C.1). The stiffness of the multiplayer anisotropic
microplate was obtained using Eq. (13) with the elastic constants
shown in Table 1 and Table C2 because the principal material direc-
tions of (100) silicon are aligned with the common coordinate system
of the vibrating microplate of the CMUT chips.

Herein, the nth layer of the multilayer microplate shown in Fig. 1 is
assumed to be electrically conductive. Therefore, the effective elec-
trode distance between the top and bottom elelctrodes can be equiva-
lently given as:

de ¼ d0 þ h1
ɛ1

þ h2
ɛ2

� � � þ hn�1

ɛn�1
ðC1Þ

where εk is the relative permittivity of the kth layer.

Appendix D

For common thin plates under uniform force, P, the deflection can
be derived from Eq. (18) with the electrostatic force and residual stress
set to be zero. The defection function is assumed to be the same as that
for Eq. (22). As such, the deflection expression can be given by

wðx; yÞ ¼ 16a4b4P
ð3a4Dy þ 2a2b2Dk þ 3b4DxÞπ4

cos2
πx
2a

� �
cos2

πy
2b

� �
ðD1Þ

The dimensionless expression for the displacement of the center
point of the isotropic microplate under electrostatic force can be
derived from Eq. (24) by setting the pressure and residual stress to
be zero and Dx = Dk = Dy = Ds as:

w0ðrÞ ¼ d0 0:5714� 0:0704r2 � 0:0704
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
65:8243� 66:7087r2 þ r4

p� �
ðD2Þ

where

r ¼ VDC

VPI
; VPI ¼ 4:62d3=20 D1=2

s

a2
ffiffiffiffiffi
ɛ0

p ðD3Þ

and Ds is the stiffness of isotropic microplates.
In a similar way, the dimensionless expression for the resonant fre-

quency of isotropic microplates under electrostatic force can be
derived from Eq. (36), as being:

f ¼ 0:2207
a2

�
ffiffiffiffiffiffiffiffiffi
Ds

pehe

s
48:259þ 5:333

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
97:4091� 74:7054r2

p
þ r2ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
97:4091� 74:7054r2

p
� 53:2465Þ

12:2383� 2:9436r2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
97:4901� 74:7054r2

p
" #1=2

ðD4Þ
The Ds in Eqs. (D.2), (D.3) and (D.4) can be replaced with Ds

l given
in Eq. (44) to take into account the scale effect on the static defection,
pull‐in voltage and resonant frequency.
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