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An exploratory study of the timelike pion electromagnetic form factor in a Poincaré-covariant bound
state formalism in the isospin symmetric limit is presented. Starting from a quark interaction kernel
representing gluon-intermediated interactions for valence-type quarks, nonvalence effects are included by
introducing pions as explicit degrees of freedom. The two most important qualitative aspects are, in view of
the presented study, the opening of the dominant ρ-meson decay channel and the presence of a multiparticle
branch cut setting in which the two-pion threshold is crossed. Based on a recent respective computation of
the quark-photon vertex, the pion electromagnetic form factor for spacelike and timelike kinematics is
calculated. The obtained results for its absolute value and its phase compare favorably to the available
experimental data, and they are analyzed in detail by comparing them to the expectations based on an
isospin-symmetric version of a vector-meson dominance model.
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I. INTRODUCTION

Hadronic timelike form factors will be measured in
upcoming experiments to an unprecedented precision. An
understanding of these quantities, which are displaying
pronounced structures originating from hadron resonances,
will contribute significantly to our knowledge on the
relation between the hadrons’ substructure and the hadron
spectrum. On one hand, based on respective experimental
and theoretical progress in the last decades, it is by now
evident that hadron resonances can be, at least in principle,
described in terms of quarks and gluons. The latter, being
the QCD degrees of freedom, are considered to be complete
in the sense that they allow for a computation of every
hadronic observable. Changing the perspective in an
attempt to understand the strong interaction starting from

the low-energy regime, a possible way of phrasing the
phenomenon of confinement in QCD is the statement that
all possible hadronic degrees of freedom also will form a
complete set of physical states. Therefore, the equivalence
of descriptions of observables in either quark and glue or
hadronic degrees of freedom is a direct consequence of
confinement and unitarity. This is the gist of a chain of
arguments, which can be sophisticated and applied to many
different phenomena involving hadrons. The related picture
is known under the name “quark-hadron duality,” and its
consequences have been verified on the qualitative as well
as the semiquantitative level; for a review, see, e.g., Ref. [1].
Averification of this duality is, beyond the trivial fact of the
absence of colored states, the clearest experimental signature
for confinement. To appreciate the scope of such a scenario, it
is important to note that a perfect orthogonality of the quark-
glue degrees of freedom on one hand and hadronic states on
the other hand, and thus, the perfect absence of “double-
counting” in any of the two “languages,” is nothing else but
another way to express confinement.
Gaining insight into the interplay between formation of

hadronic bound states, consisting of quarks and gluons, and
the open decay channels of the respective resonance is an
essential element of every study of timelike form factors in
kinematic regions close to a resonance. Here, attention
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should be paid to the fact that the hadron whose form factor
is investigated and the hadronic resonance that is apparent
in the form factor are both to be described as composite
objects of quarks and gluons. The same is true for the
hadronic decay products in a hadronic or semileptonic
decay of the resonance. This makes evident that an
approach to calculate a timelike form factor from QCD,
or from a microscopic model based on QCD degrees of
freedom, faces the challenging task to treat all elements
appearing in the calculation on the same footing and to a
sufficient degree of sophistication if the result is intended to
allow for conclusions on the dynamics underlying such a
form factor.
Herein, we will report on an exploratory study of the

timelike pion electromagnetic form factor using functional
methods. More precisely, we will employ a combination of
Bethe-Salpeter and Dyson-Schwinger equations (for recent
reviews on this and related approaches, see, e.g., [2–5]).
Although such an approach is capable of allowing a first-
principle calculation (see, e.g., the computation of the
glueball spectrum reported in Ref. [6]), for the task at hand,
this is yet out of reach. To grasp all essential features of the
pions’ timelike form factor,1 one needs to describe at least
(i) the pion as bound state of quark and antiquark, thereby
at the same time taking into account its special role as
would-be Goldstone boson of the dynamically broken
chiral symmetry of QCD, (ii) the mixing, respectively,
the interference of the ρ meson, being described also as a
quark-antiquark bound state, with a virtual photon when
this photon is, in turn, coupled to a quark-antiquark pair via
the fully renormalized quark-photon vertex, and (iii) the
dominant decay channel of the ρ meson, namely, ρ → ππ.
The study presented here is now in two aspects exploratory.
First of all, the interaction between quarks and antiquarks is
modeled in such a way that the essential features, as
implied by QCD and phenomenology, are taken into
account but that it is still manageable in such an involved
calculation. Second, in several places, we will make
technical simplifications, especially when the such intro-
duced error can, for good reasons, be assumed to be small,
and the reduction in the computing time needed is sub-
stantial. We thus aim here more for an understanding of
how the different features of the form factor arise from the
QCD degrees of freedom than for a quantitative agreement
with the experimental data.
In the chosen model for the quark-antiquark interaction,

besides a gluon-mediated interaction, pions also will be
included explicitly. The reason for this is as follows: If one

were able to take into account the fully renormalized quark-
gluon vertex exactly within this approach, hadronic degrees
of freedom will effectively emerge and thus be included in
the interaction between quarks and antiquarks, and, respec-
tively, they will back feed on the quarks’ dynamics. Due to
the pions’ Goldstone boson nature, and especially due to
the implied small pion mass, the pions are the most
important low-energy degrees of freedom within the strong
interaction, as, e.g., also elucidated by chiral perturbation
theory. As, in order to describe the physics of decays,
nonvalence effects need to be taken into account, it is some
minimal requirement for the investigation reported here to
include pions as the most important nonvalence-type
interaction mediator in the sub-GeV region.
The interaction model herein is also chosen in view of a

possible generalization to the study of baryon form factors,
and hereby, especially the nucleons’ timelike form factor.
In this respect, one can build on existing calculations of
spacelike form factors from bound state amplitudes; see,
e.g., Refs. [3,12–16] for some recent respective work. A
thorough understanding of the proton timelike form factor
at very low Q2 is a very timely subject as the upcoming
PANDA experiment possesses the unique possibility to
measure the proton’s electromagnetic form factors in the
so-called unphysical region through the process
p̄p → lþl−π0, l ¼ e; μ [17]. At large Q2, the question of
the onset of the convergence scale between the spacelike
and the timelike form factors arises.
However, also, the pions’ timelike electromagnetic form

factor will be studied further by upcoming experiments,
among other reasons, because recently, the consistency of the
available datasets has been questioned [18]. Based on the
long-known fact that the τ radiative decay allows one to
extract the pion form factor [19] and that a very large number
of τ leptons are produced at B-meson factories, further
high-precision data in sub-GeV region will become
available.2

Besides earlier lattice QCD calculations of the pions’
spacelike electromagnetic form factor [21–27], recently,
calculations of the timelike pion form factor have become
available [28–31]. These results typically show a good
agreement with the experimental data. In those calcula-
tions, the extraction of the timelike form factor employs a
parametrization based on the vector meson dominance
(VMD) picture to determine the momentum dependence
of the timelike pion form factor from the lattice data at
discrete energies.
The pion electromagnetic form factor for space- and

timelike momenta has also been investigated within a light-
front model in order to address the issue of nonvalence
components of the pion and photon wave functions [32].
The employed relativistic approach is based on a

1There are several investigations of the spacelike pion electro-
magnetic form factor in the Dyson-Schwinger–Bethe-Salpeter
approach; early examples include [7–9]. A calculation of this form
factor spanning the entire domain of spacelikemomentum transfers
is described in Ref. [10]. Within the Bethe-Salpeter formalism of
covariant spectator theory, the spacelike pion electromagnetic form
factor has also been calculated; see, e.g., [11].

2In this work, we will compare to the dataset of Ref. [20]
available at https://www.hepdata.net/record/ins728302.
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parametrization for the emission or absorption of a pion by
a quark and on a microscopic VMD model for the dressed
quark-photon vertex. Within our approach, the quark-pion
coupling is given by the pion’s Bethe-Salpeter amplitude,
and the fully dressed quark-photon vertex has been calcu-
lated [33] in complete agreement with the computation of
the pion electromagnetic form factor reported herein.
The exploratory calculation presented herein is done in

the isospin symmetric limit. One of the effects of isospin
breaking clearly visible in the timelike pion form factor is
ρ − ωmixing; see, e.g., the review [34]. To this end, wewill
employ the VMD-based fit given in [34] and modify it such
that an expected form of the pion form factor without this
mixing effect is extracted.3 Furthermore, we will present a
simplified but numerically quite accurate VMD paramet-
rization of the timelike form factor, which then serves as a
basis for a detailed analysis of our results. Here, the focus is
more on a comparison of our results with the form expected
on the basis of the VMD parametrization than on numerical
agreement.4

This paper is organized as follows: In Sec. II, we review
some facts about the electromagnetic pion form factor,
employ the VMD-based fit given in [34] to remove the
ρ − ω mixing effects, and provide an expected form of the
pion form factor. In Sec. III, we present our approach based
on Bethe-Salpeter and Dyson-Schwinger equations. Our
results are presented and analyzed in Sec. IV. In Sec. V, we
present conclusions and an outlook. Some technical details
are deferred to two appendices.

II. THE TIMELIKE ELECTROMAGNETIC PION
FORM FACTOR

The pion, being a composite object, does not have a
pointlike interaction with the electromagnetic field, and the
related substructure, the pion being a pseudoscalar, is
related to one form factor. Considering, for example, the
scattering of an electron off a pion πþ, one can describe the
leptonic part of the interaction quite precisely in lowest-
order perturbation theory; i.e., one considers the process in
which the electron emits a virtual photon, and the latter
couples to the pion. Defining the form factor FπðsÞ via the
relation,

hπþðp1Þjjμe:m:jπþðp2Þi ¼ eðp1 þ p2ÞμFπðq2Þ; ð1Þ

where qμ ¼ pμ
1 − pμ

2 is the virtual photon momentum, and e
is the elementary electric charge. The S-matrix element for

electron-pion scattering is then proportional to the form
factor,

iMeπ→eπ ¼ eðp1 þ p2ÞμFπðq2ÞDμν
photonðqÞ

ðieūðk1; s1Þγνuðk2; s2ÞÞ; ð2Þ

where Dμν
photonðqÞ is the photon propagator, and uðki; siÞ is

the electron spinor; see, e.g., Sec. 8.4 of [39] for more
details. The kinematics of this scattering process is such
that the photon momentum is spacelike, and without loss of
generality, one can assume the form factor FπðsÞ to be real.
Charge conservation requires that for a real photon, one
has Fπð0Þ ¼ 1.
Turning to the process of electron-positron annihilation

into a pion pair, the corresponding S-matrix element is again
proportional to the form factor (see, e.g., Sec. 8.5 of [39]),

iMeþe−→πþπ− ¼ eðp1 þ p2ÞμFπðq2ÞDμν
photonðqÞ

ð−iev̄ðk1; s1Þγνuðk2; s2ÞÞ; ð3Þ

with appropriately redefinedmomenta. Especially, thevirtual
photon momentum is now timelike (cf., Fig. 1), and one
measures in such an annihilation process to a pion pair the
form factor for timelike momenta. Above the two-pion
production threshold, i.e., in the physical region, the corre-
sponding cut in the amplitude (3) necessitates one to treat the
timelike pion form factor as a complex quantity, and it fulfills
the dispersion relation:

Fπðq2Þ ¼ 1þ q2

π

Z
4m2

π

ds
ImFπðsÞ

sðs − q2 − iϵÞ : ð4Þ

Especially, it is expected that thephase of thepion form factor
varies strongly in a two-pion resonance region. Below the
inelastic threshold, i.e., for s < 4m2

π, the timelike pion form
factor is, via Watson’s final state theorem, related to the
isovector P-wave scattering phase shift δ1;1ðsÞ:

ImFπðq2Þ ¼
1

2i
ð1 − e−2iδ1;1ðsÞÞFπðsþ iϵÞ

¼ sinðδ1;1ðsÞÞe−iδ1;1ðsÞFπðsþ iϵÞ: ð5Þ

FIG. 1. Electron-positron pair annihilating to a virtual photon
with timelike momentum, which then decays to a pion pair.

3In Ref. [35], another method has been used to remove the
ρ − ω mixing effects from the data.

4A precise representation of the timelike form factor requires
parametrizations, including excited ρ mesons; respective exam-
ples can be found in Refs. [36,37]. Two-photon effects, on the
other hand, can very likely be safely neglected; for a correspond-
ing study of the form factor at large momentum transfer, see [38].
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As depicted in Fig. 1, the pion form factor contains, for
timelike as well as for spacelike photon virtualities, all kind
of interaction processes turning a photon into a pion pair.
As strong interaction processes dominate the corresponding
amplitude, and as gluons do not couple directly to photons,
one decisive element of the pion form factor is the
amplitude describing how the photon couples to a quark,
taking hereby all possible contributing QCD processes into
account. This amplitude is exactly the full quark-photon
vertex. As we will see in the following, this correlation
function carries information about the virtual photon’s
hadronic substructure. And, as will be described in detail
in the next section, the other quantities needed then for
calculating the pion form factor are the fully renormalized
quark propagator and the pion bound state amplitude, the
latter describing how an antiquark and a quark form a
pionic bound state.
While our calculation is based on QCD degrees of

freedom, it is capable of providing an understanding
why in the resonance region, a vector-meson dominance
(VMD) picture provides very good results for the timelike
pion form factor. In addition, it will elucidate to which
extent a VMD picture might be applicable in other
kinematic regions.
In the VMD picture, the hadronic contribution to the

photon propagator is given by mixing with electrically
neutral vector mesons. Restricting to light-quark mesons,
the corresponding vector meson is the ρ0, i.e., the
uncharged member of the isotriplet of vector mesons. In
a would-be isospin symmetric world, this would be the only
vector meson below one GeV with which a virtual photon
mixes because the isosinglet ωwill not mix with the photon
due to G parity.
In the real world, isospin symmetry is broken, and one of

the many effects of isospin breaking is ρ − ω mixing; see,
e.g., the review [34]. This mixing and the resulting
interference of states lead to quite some pronounced
structure in the timelike pion form factor around m2

ω.
Indeed, it is by now well understood that the sharp dip
in the experimental data stems from a combination of ρ − ω
mixing and interference effects between the decays ρ → ππ
and ω → ππ, the latter being isospin breaking; see, e.g.,
Ref. [34]. Moreover, it has been estimated that this
combination of mixing and interference effects decreases
the height of the bump of the order of up to 10% (see [35]
and references therein); cf., also Fig. 4 of [40] in which a
calculation of the the timelike pion form factor employing a
dispersion representation of meson loop diagrams has been
reported.
As the here presented exploratory calculation is per-

formed in the isospin limit,5 and thus, ρ − ω mixing is

neglected, we estimate its effect by comparing the VMD-
based fit to the pion form factor given in Ref. [34] with a
plot of the same expression but the mixing matrix element
put to zero, Πρω ¼ 0 (see Fig. 2). As expected, the resulting
curve is much smoother than the one including the ρ − ω
interference effect. Around the ω mass, the deviation of the
two curves can be as large as almost 10%; however, this
effect is limited to a small interval, and the two curves are
practically indistinguishable outside this small interval.
Therefore, we expect our calculation to reproduce all
qualitative features of the curve representing the case with
ρ − ω mixing switched off and to be in a reasonable
quantitative agreement with it.
It is instructive to analyze the momentum behavior of a

simplified version of the fit given in Ref. [34]. In order to be
in agreement with the notation, in the following presenta-
tion, we introduce the photon virtuality with the convention
that Q2 < 0 corresponds to the timelike region. In the
above used fit, a momentum dependent expression
for the width of the ρ meson is used. It displays the
two-pion cut,

ΓρðQ2Þ ∝ ð−Q2 − 4m2
πÞ3=2Θð−Q2 − 4m2

πÞ; ð6Þ

which is important for a qualitatively correct analytic
structure of the pion form factor. However, especially close
to the maximum of the pion form factor, the pion mass is
quantitatively negligible, and for vanishing pion mass, the
momentum dependent width assumes for timelike Q2 < 0
the relatively simple form,

ΓρðQ2Þ ¼ Γ̄ρjQ2j=m2
ρ; ð7Þ

FIG. 2. Absolute value of the pion form factor in the timelike
ðQ2 < 0Þ domain from the VMD-based fit given in Ref. [34] (full
line) in comparison to the experimental data [20]. The dashed line
is based on the same expression but the mixing matrix element
put to zero, Πρω ¼ 0.

5Isospin breaking and thus, the effect of ρ − ω mixing on the
pion form factor is currently under investigation; the correspond-
ing results will be published elsewhere.
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where Γ̄ρ ¼ Γρð−m2
ρÞ. This then leads to the simplified but

still quite accurate form for the fit,6

FπðQ2 þ iϵÞ ¼ 1 −
gρππ
gρ

Q2ðQ2 þm2
ρÞ

ðQ2 þm2
ρÞ2 þQ4Γ̄2=m2

ρ

þ i
gρππ
gρ

Q4Γ̄=mρ

ðQ2 þm2
ρÞ2 þQ4Γ̄2=m2

ρ
; ð8Þ

where ϵ → 0þ has been introduced to fix the sign of the
imaginary part. Hereby, the coupling constant gρππ is
determined from Γρππ ¼ Γ̄ ¼ 149 MeV to be gρππ ≈ 6,
and gρ is a parameter reflecting the strength of the
γ − ρ0-mixing, which is then described by the effective
Lagrangian,

Lργ ¼ −
em2

ρ

gρ
ρ0μAμ:

From the partial width Γρeþe− ¼ 7 keV, one infers gρ ≈ 5.
The form given in Eq. (8) motivates one to compare the

obtained results for the real and the imaginary part of the
timelike form factor from our calculation to a rational, also
known as, Padé fit. Phrased otherwise, Eq. (8) formalizes
the expectation for the timelike form factor based on the
VMD picture, and our results based on the quark-photon
vertex function and the pion bound state amplitude will be
analyzed by discussing how much they extend beyond to
this form.

III. DYSON-SCHWINGER AND BETHE-SALPETER
FORMALISM

We determine the necessary input for the calculation of
the pion electromagnetic form factor using a combination
of Bethe-Salpeter (BSE) and Dyson-Schwinger equations
(DSE). To make this presentation self-contained, we
summarize in this section the most relevant aspects of
the approach; for more details see, e.g., the recent reviews
[2–5] as well as references therein. All expressions in the
following are understood to be formulated in Euclidean
momentum space, i.e., after a Wick rotation.
In the DSE and BSE formalism, the fully dressed quark-

photon vertex Γμ, which describes the interaction between
quarks and photons in a quantum field theory, can be
obtained as the solution of an inhomogeneous BSE,

ðΓμÞaα;bβðp;QÞ ¼ Z2ðγμÞabtαβ
þ
Z
q
Krρ;sσ

aα;bβðQ;p; qÞSrρ;eϵðk1Þ

× ðΓi;μÞeϵ;nνðQ; qÞSnν;sσðk2Þ: ð9Þ

Here, Q is the photon momentum, p is the relative
momentum between quark and antiquark, q is an internal
relative momentum that is integrated over, and the internal
quark and antiquark momenta are defined as k1 ¼ qþQ=2
and k2 ¼ q −Q=2, respectively, such thatQ ¼ k1 − k2 and
q ¼ ðk1 þ k2Þ=2. Latin letters represent Dirac indices, and
Greek letters represent flavor indices. The isospin structure
of the vertex is given by tαβ ¼ diagð2=3;−1=3Þ. The Dirac
structure of the vertex can be expanded in a basis consisting
of 12 elements [33], and all of them are considered in our
calculation.
Similarly, mesons as bound states of two quarks are

described in this framework by Bethe-Salpeter amplitudes
Γ, which are obtained as solutions of a homogeneous BSE,

ðΓÞaα;bβðp;PÞ ¼
Z
q
Krρ;sσ

aα;bβðP; p; qÞ

× Srρ;eεðk1ÞðΓÞeε;nνðq; PÞSnν;sσðk2Þ; ð10Þ

where, for clarity, we have here used P for the total meson
momentum (instead of Q as above). For pions, the Dirac
part of the Bethe-Salpeter amplitude Γ can be expanded in a
tensorial basis with four elements.
In the equations above, the interaction kernelK describes

the interaction between quark and antiquark, and S is the
fully dressed quark propagator. We will discuss in detail the
interaction kernels below. The quark propagator SðpÞ is
obtained as the solution of the quark DSE,

S−1 ¼ S−10 − Z1f

Z
q
γμSðqÞΓqgl

ν ðq; kÞDμνðkÞ; ð11Þ

with S−10 the renormalized bare propagator,

S−10 ðpÞ ¼ Z2ðipþ ZmmÞ; ð12Þ

and Z1f, Z2, and Zm are renormalization constants,m is the
(renormalization-point dependent) current quark mass, Γqgl

is the full quark-gluon vertex, and Dμν is the full gluon
propagator which, in the Landau gauge, is parametrized as

DμνðkÞ ¼
�
δμν −

kμkν
k2

�
Zðk2Þ
k2

; ð13Þ

with Zðp2Þ being the gluon dressing function. For sim-
plicity, we have suppressed the color indices.

6In contrast to a constant width approximation, the pole is in
this parameterization and thus, in the employed fit not located at
Q2 ¼ −m2

ρ þ imρΓ̄ρ but at Q2 ¼ ð−m2
ρ þ imρΓ̄ρÞ=ð1þ Γ̄2

ρ=m2
ρÞ;

i.e., the real and imaginary part of the pole position are decreased
by 3.7% if the same values for the ρ’s mass and width are used.
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A. Interaction kernels

The interaction kernel K in Eqs. (9) and III encodes all
possible interactions processes between a quark and an
antiquark. In a diagrammatic representation, it contains a
sum of infinitely many terms. In practical calculations, the
expansion of the interaction kernel must be truncated to a
sum of a finite number of terms, chosen such that the
relevant dynamics and global symmetries are correctly
implemented. Chiral symmetry and its dynamical breaking
ensures that pions are massless bound states in the chiral
limit as a consequence of Goldstone’s theorem. On the
other hand, U(1) vector symmetry ensures charge con-
servation in electromagnetic processes. Chiral symmetry
will be correctly implemented in the DSE and BSE
formalism only if the kernel fulfills the axial-vector
Ward-Takahashi identity (Ax-WTI),

iΣarðpþÞγ5rbtiαβ þ iγ5arΣrbðp−Þtiαβ
¼
Z
q
Krρ;sσ

aα;bβðQ;p;qÞ½itiρνγ5rnSnν;sσðq−Þ þ iSrρ;eεðqþÞγ5estiεσ�;

ð14Þ

with Σ the quark self-energy and v� ¼ v�Q=2. Similarly,
vector symmetry will be correctly implemented if
the kernel satisfies the vector Ward-Takahashi identity
(V-WTI),

iΣabðpþÞtiαβ þ iΣabðp−Þtiαβ
¼

Z
q
Krρ;sσ

aα;bβðQ;p; qÞ½itiρνSrν;sσðq−Þ − iSrρ;sεðqþÞtiεσ�;

ð15Þ

In DSE and BSE studies, the most widely used trunca-
tion is the so-called rainbow-ladder (RL) truncation,
whereby the BSE kernel consists of a vector-vector gluon
exchange, namely (omitting again color indices),

Krρ;sσ
aα;bβðQ;p; qÞ ¼ αðk2ÞγμarγνsbDμνðkÞδαρδσβ; ð16Þ

with k ¼ p − q the gluon momentum. In order to preseve
the Ax-WTI and V-WTI, the kernel (16) is used in
combination with a truncated quark DSE, defined by the
replacement,

Z1fγμZðk2ÞΓqgl
ν ðq; pÞ → Z2

2γμ4παðk2Þγν; ð17Þ

such that αðk2Þ provides an effective coupling that
describes the strength of the quark-antiquark interaction.
To parametrize this effective interaction, we use the Maris-
Tandy model [41,42],

αðq2Þ ¼ πη7
�
q2

Λ2

�
2

e−η
2 q2

Λ2 þ 2πγmð1 − e−q2=Λ2
t Þ

ln½e2 − 1þ ð1þ q2=Λ2
QCDÞ2�

;

ð18Þ

where the second term on the right-hand side reproduces the
one-loop QCD behavior of the quark propagator in the
ultraviolet, and the Gaussian term provides enough inter-
action strength for dynamical chiral symmetry breaking to
take place. The model parameters Λ and η are determined as
explained in the next section. The scale Λt ¼ 1 GeV is
introduced for technical reasons and has no impact on the
results. For the anomalous dimension, we use
γm¼ 12=ð11NC−2NfÞ¼ 12=25, with Nf ¼ 4 flavors and
Nc ¼ 3 colors. For the QCD scale, we use ΛQCD ¼
0.234 GeV.
In the RL truncation, bound states cannot develop a

decay width; correspondingly, their masses are real num-
bers. Note that bound states, determined as solutions of
BSEs, appear as poles in Green’s functions with the
corresponding quantum numbers. In the RL approximation,
these poles occur for real (and in the convention employed
here, negative) momentum-squared values in certain kin-
ematic configurations. In particular, for the photon being
described by a vector field, electrically neutral vector
mesons appear as poles of the quark-photon vertex. In
the RL approximation, these poles are located at negative
and real values of Q2 (for whichM2 ¼ −Q2, withM being
the mass of the vector meson). Such poles in the quark-
photon vertex also manifest as poles in the calculation of
timelike form factors, in contradiction with phenomenol-
ogy. Generally speaking, any physical phenomenon that is
triggered by the presence of virtual intermediate particles,
as, e.g., decays, will be absent from any calculation using
the RL truncation only.
It is possible to improve the RL truncation in this respect

by reintroducing7 the presence of intermediate particles
explicitly. The simplest implementation of such an idea was
introduced in [43,44],8 where, based on the role of the pion
as lightest hadron, explicit pion-quark interactions were
introduced in the truncated quark DSE and in the BSE
kernel K, with the pion-quark interaction vertex given by
the pion Bethe-Salpeter amplitude Γ, calculated consis-
tently via a truncated BSE. The corresponding additional
BSE kernels are given in Appendix A and shown in Fig. 8,
and the technical difficulties arising for timelike momenta
when those kernels are used in BSEs have been described

7Note that effects of intermediate virtual states like the decay of
hadrons are, in principle, present in the full quark-gluon vertex
which, however, is drastically simplified in the RL truncation.

8See, however, Ref. [45] for considering pion loop contribu-
tions to the electromagnetic pion radius in the DSE and BSE
approach. An alternative way is to introduce two-pion states via
an explicit two-pion component in the bound state amplitude; see
Ref. [46] and references therein.
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in detail in [33]. These type of kernels enable the possibility
of intermediate virtual decays in the BSE interaction kernel
to occur. As a consequence, certain BSE solutions signal a
finite decay width and thus, represent (a) hadron resonance
(s). For example, the description of the ρ meson as a finite-
width resonance is then mostly due to the intermediate
process ρ → ππ (see [47] for a treatment in the here
discussed approach as well as [48,49] and references
therein for respective calculations based on DSEs and
BSEs) and the partial decay width to the latter process
representing more than 99% of the total ρ decay width.
Additionally, and thereby completing the physical effects
of intermediate virtual ππ-states, in this truncation, the
quark-photon vertex develops a multiparticle branch cut
along the negative real Q2 axis, starting as expected at the
two-pion production threshold [33]. Clearly, including
these two effects of the intermediate virtual ππ-states is
especially important when it comes to the calculation of the
pion form factor for timelike momenta in the sub-GeV
kinematic region.
We wish to stress here that, for computational feasibility,

for the pion vertices in (A1)–(A4) we used the leading γ5
component of the pion Bethe-Salpeter amplitude in the
chiral limit, given by B=fπ, with B one of the quark’s
dressing functions [see Eq. (A5)]. On the other hand, the
pion amplitudes used in the form factor calculation of
Eq. (19) are considered in full, including their leading and
subleading contributions. In that regard, our calculations
contain two types of treatments of pions.
Even though the “pionic” kernels (A1)–(A4) are phe-

nomenologically justified and, as we will see in the next
section, constitute a first step in the correct direction, it
must be noted that they have not been (yet) rigorously
derived from QCD. Lacking a solid quantum-field theo-
retical basis, the use of these kernels (A1)–(A4) comes with
some shortcomings, especially as it implies that the Ax-
WTI and V-WTI are not fulfilled simultaneously. Briefly,
the origin of the problem is that, microscopically, the
quark-pion interaction used in this paper represents only a
partial resummation of diagrams involving quarks and
gluons, as they appear in the quark-gluon vertex [43].
These diagrams, however, would not necessarily manifest
in the sameway in the Bethe-Salpeter kernel and, thus, their

resummation in pionic degrees of freedommust be adjusted
in order to keep consistency between DSEs and BSEs and
preserve the relevant symmetries. Indeed, one can choose to
preserve either the Ax-WTI (and hence, chiral symmetry)
or the V-WTI (and hence, charge conservation), but not
both [33,43]. It turns out, however, that the respective
violation of either of them induce typically only small
errors in physical observables, as we will demonstrate for
some quantities in the next section.

B. Form factor calculation

Meson form factors are extracted from a current Jμ

encoding the coupling of a meson to an external electro-
magnetic current. In the BSE framework, the current is
calculated by means of the coupling of an external photon
to each of the constituents of the bound state, as specified
by a procedure known as gauging and developed in [50–
54]. The conserved current Jμ that describes the coupling of
a single photon with a quark-antiquark, a three-quark or
other multiquark system is given by

Jμ ¼ Ψ̄fG0ðΓμ − KμÞG0Ψi; ð19Þ

with Ψi;f the incoming and outgoing Bethe-Salpeter
amplitudes of the meson, the baryon, or some other
multi-quark state, and G0 represents the appropriate prod-
uct of dressed quark propagators. This equation is shown
diagrammatically for the quark-antiquark–meson case in
Fig. 3. The term Γμ represents the impulse approximation
diagrams where the photon couples to the valence quarks
only,

Γμ ¼ ðS−1 ⊗ S−1Þμ ¼ Γμ ⊗ S−1 þ S−1 ⊗ Γμ; ð20Þ

with Γμ the quark-photon vertex. The term Kμ describes the
interaction of the photon with the Bethe-Salpeter kernel,
which, in our truncation, includes the coupling of the
photon to the quark-pion vertex and to the propagating
pions (second and third diagram in Fig. 3). Including both
terms in (19) is necessary in order to implement current
conservation precisely. Note that the s- and u-channel pion
decay terms (most right diagram in Fig. 8) do not contribute
to the term Kμ, nor via seagulls, the reason being that trying

FIG. 3. Diagrams relevant for the calculation of the pion form factor in the truncation employed herein, as determined by the gauging
method. Solid lines represent propagating quarks and dashed lines propagating pions. Wavy lines correspond to the external photon. The
impulse approximation implies considering the first diagram and the corresponding permutation only.
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to include them would leave a πππ amplitude on one side of
the respective full diagram. However, the new vertices
appearing in the term Kμ, the coupling of the photon to the
quark-pion vertex and to the propagating pions, represent
an enormous computational challenge. Given the explor-
atory purpose of the present calculation, we thus decided to
omit the coupling of the photon to the quark-pion vertex
and to the propagating pions and to consider the impulse
diagram only (first diagram in Fig. 3). As we will show in
the next section, the thereby implied violation of charge
conservation is at the level of approximately one percent.

IV. RESULTS

Following the formalism sketched above, we have
calculated the pion electromagnetic form factor in the
timelike Q2 < 0 domain. For comparison with previous
calculations, we will also show results in the spacelike
Q2 > 0 domain.
In our discussion in the preceding section, it remained to

be explained how the parameters η and Λ of our interaction
model (18), as well as the value of the current quark mass,
are fixed. It is customary in studies using the RL truncation
to adjust those parameters such that the pion decay constant
agrees with the experimental value.9 In Ref. [33], the quark-
photon vertex has been calculated for the first time with the
above discussed interaction kernels taken into account and
also used herein. The parameters, including the isospin
symmetric light-quark current massmq, were adjusted such
that the pion mass and decay constant as well as the ρ-
meson mass have been correctly reproduced in the
employed approximation. Here, only the gluon- and
pion-exchange kernels need to be used for fixing the
parameters because the pion decay kernels (A3) and
(A4) do not contribute to the pion BSE.
For the present exploratory calculation, we choose to

adjust the parameters in a slightly different and simpler
manner, especially as we aim at a qualitative understanding
of the physical mechanisms involved in determining the
shape of the pion form factor and not so much at achieving
an accurate quantitative agreement with experiment. First,
we set initially η ¼ 1.5. Second, although we assume
(confirmed by our calculation) that the pion-decay kernels
will not only move the ρ-meson pole into the complex
plane but also shift down its real value, we nevertheless
adjust the parameter Λ such that we obtain a ρ-meson mass
close to the phenomenological value already in the calcu-
lations with gluon- and pion-exchange kernels only. Third,
we require it to reproduce a reasonably accurate value for
the pion decay constant, namely fπ ¼ 138 MeV. Although
this value is a few percent larger than the experimental one
(cf., the most recent Particle Data Group (PDG) value

fPDGπ ¼ 130.50ð1Þð3Þð13Þ MeV [55]), we have adopted it
in view of a compromise in the effort needed for the
parameter determination and the related accuracy. Finally,
we adjustmq to obtain the correct value for the pion mass as
well. In this way, we chose the model parameters to be
η ¼ 1.5, Λ ¼ 0.78 GeV, and mq ¼ 6.8 MeV at a renorm-
alization scale μ ¼ 19 GeV. As a rudimentary test of model
dependence, we additionally perform the calculations for
η ¼ 1.6 as well (keeping Λ andmq unchanged). The results
for the pion mass and decay constant as well as for the ρ-
meson and ω-meson masses, without the pion decay
kernels being taken into account, are shown in Table I.
As mentioned in the previous section, the full QCD

quark-photon vertex possesses poles reflecting the masses
and widths of the electrically neutral vector meson reso-
nances. Correspondingly, and as discussed in detail in
Refs. [33,47], a solution for the quark-photon vertex in the
DSE and BSE framework allows one to extract the ρ-meson
mass and width via the position of the poles of the vertex
dressing functions. For the RL truncation, as well as for the
RL plus pion exchange approximation, this pole is located
on the real negative Q2 axis, indicating that the ρ mesons
were stable for those truncations. Including the s- and u-
channel decay kernels (A3) and (A4), the pole of the
dressing functions moves into the complex plane and can
be extracted from the data on the real axis via a Padé fit.
Parametrizing the pole position as M2

pole ¼ M2
ρ − iMρΓρ,

we extract the corresponding results for the ρ-meson mass
and width, Mρ and Γρ, for this truncation (see Table I) in
reasonable agreement with the experimental values.
Hereby, it has to be noted that underestimating the ρ-
meson width does not come unexpected because taking into
account only the leading γ5 component of the pion Bethe-
Salpeter amplitude in the kernels (A1)–(A4) misses some
strengths therein. Whether considering in addition that the
subleading pion amplitudes will provide a much better
result for the ρ-meson width can only be answered by
performing the corresponding calculation. This computa-
tion is then, however, an order of magnitude more expen-
sive than the present exploratory calculation.

TABLE I. The pion mass mπ , the pion decay constant fπ , and
the ρ-meson and ω-meson masses mρ and mω for the two
different parameterizations of the model used herein and for
the case with rainbow-ladder and pion-exchange kernels but
without decay kernels are shown. The light-quark mass has been
set to mq ¼ 0.0068 GeV. The rightmost column displays the
extracted ρ-meson pole position defined asM2

pole ¼ M2
ρ − iMρΓρ,

as discussed in the text. All values for dimensionful quantities are
given in GeV.

Λ ¼ 0.78 mπ fπ mρ mω Mρ Γρ

η ¼ 1.5 0.139 0.138 0.768 0.778 0.750 0.100
η ¼ 1.6 0.126 0.138 0.774 0.784 0.759 0.105

9Note that, for this observable, the result is quite independent
of the value of η around η ¼ 1.8, and thus, effectively, only the
parameter Λ has to be adjusted.
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It is interesting to note that the pion exchange kernels lift
the degeneracy in between the isovector ρ- and the
isosinglet ω-meson present at the level of RL calculations.
Whereas the interaction kernels in the RL truncation are, in
contradiction to phenomenology, flavor blind and thus
flavor U(2) [resp., flavor UðNfÞ] symmetric, the pion
exchange kernels are not; they lead to a splitting such that
mω −mρ ¼ 10 MeV, which compares favorably with the
experimental splitting of 7–8 MeV.
We turn now to the calculation of the pion form factor.
As already indicated in the previous section, there are,

besides restricting to the leading pion amplitude in the
kernels (A1)–(A4), two major approximations that we must
perform in order to keep the calculation technically
manageable. First, using the decay kernels as described
in this work entails that one must choose whether the axial-
vector or the vector WTI are preserved, while the other one
is violated. Following [33], we choose to preserve the
vector identity. A violation of the axial-vector WTI is
manifested, among others, in the pion not being massless in
the chiral limit, and therefore, the value of the current mass
for which the pion becomes massless allows for a quanti-
fication of the violation of the axial-vector WTI. In Fig. 4,
we therefore show the evolution of the pion mass with
varyingmq in the employed truncation. First, the relation is
linear as expected from the Gell-Mann–Oakes–Renner
relation, which is a direct consequence of the dynamical
breaking of chiral symmetry. Second, the pion does not
become massless in the chiral limit but for a value of the

current mass mð0Þ
q ðμ ¼ 19 GeVÞ ¼ 3 MeV. On one hand,

this explains the relatively large value of mqðμ ¼
19 GeVÞ ¼ 6.8 MeV we needed to obtain the correct pion
mass: The related explicitly chiral-symmetry-breaking term

is mq −mð0Þ
q ¼ 3.8 MeV and thus, much closer to what is

expected from the known parameters of QCD. Second, as
the masses of the vector mesons depend linearly on the
current mass, the induced error onmρ andmω is of the order

of mð0Þ
q ¼ 3 MeV, and thus, it is as small or even smaller

than other uncertainties in our calculation of the vector
meson masses.
Second, in the calculation of the form factor, we use the

impulse approximation which, in this context, implies
neglecting the second and third diagrams in Fig. 3. The
consequence of discarding diagrams is the violation of
charge conservation or, equivalently, a deviation from
Fπð0Þ ¼ 1. As can be seen in the inset in Fig. 5, this
effect is of the order of ∼1% only.
As can be also seen from Fig. 5, the results for the pion

form factor in the spacelike Q2 > 0 regime are practically
independent from the value of the η parameter of the model.
This is also confirmed by the extracting the charge radius;
the corresponding resulting values are

ffiffiffiffiffiffiffiffi
hr2πi

p
¼ 0.685 fm

for η ¼ 1.5 and 0.683 fm for η ¼ 1.6. Even more remark-
able is the fact that our calculation shows a very good
agreement with experimental data, not only for the pion
charge radius (the most recent PDG value beingffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hr2πiPDG

p
¼ 0.659� 0.004 fm [55]) but in the whole

spacelike domain even though, as evident from the above
discussion, we aimed at including all physical effects that
are important in the timelike regime. An interpretation of
this result in view of the dispersion relation (4) provides an
indication that the imaginary part in the timelike region is
precisely enough reproduced to provide very good results
for the spacelike form factor.
We show our results for the pion form factor for timelike

ðQ2 < 0Þ virtualities in Figs. 6 and 7. As discussed in the
previous section, as a consequence of the decay kernels in
our truncation, the pion form factor develops a branch cut
along the real negative axis, starting from the two-pion
thresholdQ2 ¼ −4m2

π , induced by the corresponding cut in
the quark-photon vertex [33]. Hence, in that region, the
(complex) form factor is defined from its analytic continu-
ation as FðQ2 þ iϵÞ. In the numerical calculations, we have
typically chosen ϵ ¼ 0.0001 GeV2 after verifying that this

FIG. 4. The pion mass squared m2
π versus the current mass

mqðμ ¼ 19 GeVÞ for the employed truncation.
FIG. 5. Pion form factor in the spacelikeQ2 > 0 domain for the
model parameters η ¼ 1.5 and η ¼ 1.6, as described in the text.
The experimental data was taken from Refs. [56] (CEA), [57]
(Cornell), and [58] (Bebek).
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value is small enough to not disturb the presented results. In
Fig. 6, we present the absolute value for the model
parameter η ¼ 1.5 and η ¼ 1.6, with the remaining model
parameters kept constant, as discussed above. As a mani-
festation of the fact that the ρ-meson pole in the quark-
photon vertex moves into the complex plane when the
decay kernels are included in the calculation, the pion form
factor develops a bump on the real and negative Q2 axis
with an approximately correct height and width. Therefore,
our calculation overcomes a major deficiency of the RL
truncation, without or even with the pion exchange term,
for which the form factor diverges instead at the Q2 value
corresponding to the ρ-meson mass in those truncations;
see, e.g., [59–61]. This constitutes already one main result
of the here presented investigation.
We note, however, that, contrary to the results for

spacelike regime, the position and height of the bump of
the form factor depends strongly on the value of the η

parameter shape of the form factor. Of course, this reflects
the different positions of the ρ-meson pole; cf., Table I.
Nevertheless, there are features that appear to be indepen-
dent of η, most prominently that the height of the bump is
underestimated. As expected from the discussion in Sec. II,
the form factor behaves smoothly beyond the bump, in
contrast to the sharp dip in the experimental data. Even
though an unambiguous analysis of the origin of such
discrepancies can only result from the inclusion of all
relevant physical mechanisms in our calculations, it is
evident from the analysis performed in Sec. II that one of
the main missing elements, among others, is the ρ − ω
mixing due to isospin breaking, which is completely absent
in the present study.
Particularly sensitive to the deficiencies of our truncation

is the phase of the form factor, shown in Fig. 7. Even
though our data shows the expected behavior near the
resonance value, it severely underestimates the experimen-
tal data, particularly in the elastic region. This is a
manifestation of the absence of some hadronic effects in
our approximation scheme, which only includes those
stemming from the resonance complex pole in the
quark-photon vertex and the ρ → ππ induced branch cut.
In addition to the isospin breaking effects discussed above,
which would be more relevant in the region above the
resonance, the impulse approximation used in our calcu-
lation of the form factor entails that effects coming from the
coupling of the photon to the intermediate hadrons, via its
coupling to the exchanged pion or to the quark-pion vertex
(see Fig. 3), are missing. It has been shown [63] that
considering only impulselike diagrams leads to a very small
pion-pion scattering amplitude in the elastic region in the
isospin I ¼ 1 channel. This, due to unitarity, implies a very
small value of the imaginary part of the pion form factor in
the elastic region (which is, in fact, what we observe),
which translates into a very small phase, as seen in Fig. 7
(and as could be inferred from Watson’s theorem).

FIG. 7. Phase of the pion form factor in the timelike Q2 < 0
domain for the model parameters η ¼ 1.5 and η ¼ 1.6, as
described in the text and compared to experimental data on
pion-pion phase shift [62].

TABLE II. The coefficients of the rational fits to the pion form
factor as discussed in the text. All values for dimensionful
quantities are given in GeV.

η ¼ 1.5 η ¼ 1.6 Eq. (8)

a1 0.5587 0.4149 0.72
a2 0.8828 0.6827 1.2
b0 0.3600 0.3600 0.36
b1 1.2307 1.2517 1.2
b2 1.0722 1.1000 1.037
c1 0.0591 0.0997 0
c2 0.1295 0.2383 0.2308
d0 0.3600 0.3600 0.36
d1 1.1924 1.2464 1.2
d2 0.9973 1.0916 1.037FIG. 6. Absolute value of the pion form factor in the timelike

Q2 < 0 domain for the model parameters η ¼ 1.5 and η ¼ 1.6, as
described in the text and compared to experimental data [20].
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Last but not least, we are comparing Padé fits, respective
rational fits of the order (3.3), for the real part and for the
imaginary part of the form factor to the expression (8).
Trying first,

ReFπðQ2Þ − Fπð0Þ ≈ −
a0 þ a1Q2 þ a2ðQ2Þ2 þ a3ðQ2Þ3
b0 þ b1Q2 þ b2ðQ2Þ2 þ b3ðQ2Þ3

ImFπðQ2Þ ≈ c0 þ c1Q2 þ c2ðQ2Þ2 þ c3ðQ2Þ3
d0 þ d1Q2 þ d2ðQ2Þ2 þ d3ðQ2Þ3 ;

ð21Þ

we obtain tiny values for the coefficients a0, a3, b3, c0, c3,
and d3. Note that this confirms the structure expected from
the VMD form (8). We repeated the fits for

ReFπðQ2Þ − Fπð0Þ ≈ −
a1Q2 þ a2ðQ2Þ2

b0 þ b1Q2 þ b2ðQ2Þ2

ImFπðQ2Þ ≈ c1Q2 þ c2ðQ2Þ2
d0 þ d1Q2 þ d2ðQ2Þ2 : ð22Þ

The coefficients resulting from these fits, as well as the ones
resulting from expression (8), are given in Table II. From
this, we conclude that the expression based on the VMD is
an astonishingly good representation of our results.
Therefore, our investigation makes it plausible that the
VMD picture can be derived from QCD. At least, the
results of the here presented microscopic approach give a
strong hint into this direction.

V. CONCLUSIONS AND OUTLOOK

In this work, we have presented an exploratory study of
the pion form factor in the DSE and BSE approach. Our
focus has been to explore how the interplay between hadron
structure (as described by form factors) and the hadron
spectrum (as described by resonance masses and widths)
can be realized in the microscopic approach presented
herein. In particular, we focused on the effect of inter-
mediate pions in the BSE interaction kernel, the inclusion
of which is sufficient to describe the ρmeson as a resonance
[47]. As elucidated by the detailed analysis in the last
section, our calculation represents a verification of the
vector meson dominance picture and provides an explan-
ation of how at the quark level, vector meson dominance
becomes effective. A more complete calculation than the
one presented here might then actually provide a derivation
of vector meson dominance from QCD.
Despite the fairly drastic approximations used in this

preliminary study, the agreement with experiment is
remarkable. On the spacelike side, our calculations agree
with experimental data at the quantitative level. For time-
like momentum transfers, the agreement is mostly quali-
tative and consistent with the fact that in our approximation
scheme, timelike physics is dominated by the lowest-lying

ρ-meson resonance only. The absolute value of the calcu-
lated form factor features a bump at approximately the
correct Q2 region as caused by a resonance pole. Our result
lacks, however, other features such as those caused by the
isospin-breaking ρ − ω mixing and interference. The phase
of the form factor also shows deficiencies caused by the
employed impulse approximation. However, the overall
qualitatively correct behavior is, nevertheless, very encour-
aging for future studies on timelike phenomenology with
BSE methods as it shows that the necessary computational
techniques are getting more and more under control and
that within a functional-method-based bound-state
approach to QCD, direct calculations in the timelike regime
are becoming feasible.
Among the different physical mechanisms absent in our

calculation, the most relevant one appears to be isospin
breaking by the light quarks’ masses and electric charges,
and the different phenomena associated with it. The
presented exploratory calculation paved the way to include
in a bound-state approach formulated in QCD degrees of
freedom the effects of isospin violation, and hereby most
prominently ρ − ω mixing, on the timelike pion electro-
magnetic form factor. Thus, including isospin violation in a
BSE approach is the topic of ongoing work. A further
related topic is the study of the form factor for the coupling
of a photon to three pions. On one hand, this process is of
special theoretical interest because the related form factor is
at the soft point completely determined by the Abelian
chiral anomaly. On the other hand, data of the COMPASS
experiment are currently analyzed [64], and therefore,
experimental data for this form factor in the timelike region
will become available. Combing previous studies in the
DSE and BSE approach for the spacelike γπππ form factor
[65–69] with the techniques of the here presented calcu-
lation will thus enable a respective investigation of this
form factor.
Another aspect we want to investigate is how to realize

the idea of decay kernels like (A3) and (A4) in a baryon
bound state equation. This is a necessary step in order to
tackle timelike nucleon form factors in the DSE and BSE
approach, which is one of our major goals due to the
increased effort and interest from the experimental side in
highly precise measurements over a wide kinematical
domain of the nucleon form factors.
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APPENDIX A: INTERACTION KERNELS

The BSE kernel representing the exchange of an explicit pionic degrees of freedom as defined in [43,44] reads
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in combination with the following truncation of the quark DSE:

S−1ðpÞ ¼ S−1ðpÞRL −
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with S−1ðpÞRL being the right-hand side of the quark DSE
in the RL truncation with the gluon-mediated interaction as
described in Sec. III. In Eqs. (A1) and (A2), the pion
propagator is taken as DπðkÞ ¼ ðk2 þm2

πÞ−1. The factor
3=2 in Eq. (A2) originates from the flavor traces, and, in the
same way, the factor C in (A1) should be obtained. When
done in the quark-photon vertex, the flavor factor leads to
C ¼ þ3=2. However, such value of C violates the Ax-WTI
while preserving the V-WTI. Since the V-WTI is related to
charge conservation in electromagnetic form factors, we

use C ¼ þ3=2 at the expense of violating the Ax-WTI.
Herein, the quark-pion vertex Γπ is taken to be the pion
Bethe-Salpeter amplitude.
The pions in the kernel can also appear in the s and u

channels [43]. We used here a version of the kernels slightly
different to the one in [43] in order to be consistent with the
construction for the t channel, where one of the pion
vertices is kept bare, and the kernel is then symmetrized.
They read
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where now r is an additional integration momentum in the
BSE [cf., Eqs. (9) or III]. The resulting truncation of the
BSE kernel and the quark DSE is shown in Fig. 8.
The inclusion of the two kernels given in equations (A3)

and (A4) generates a highly nontrivial analytic structure of
the integrand of the BSE, induced by the intermediate pions
going potentially on shell, as well as by singularities in the
quark propagators; see Ref. [33] for details, where also the
techniques for finding viable contour deformations for
performing the numerical integrations in a mathematically
correct way are described.10

The pion Bethe-Salpeter amplitude possesses four tensor
components. Hereby, only one is generically small such
that for a precise calculation of pion properties, it would be
necessary to take into account three of them, namely the
leading pseudoscalar term and two subleading ones related
to the axialvector structure. However, in using the above
described kernels, three amplitudes for every pion Bethe-
Salpeter amplitude in these expressions is numerically by
an order of magnitude more expensive and far beyond the
scope of the present study. Having restricted the leading
component of the pion amplitude in the kernels (A1) and
(A4), one can further exploit that this leading amplitude
may be well approximated using the chiral limit value of
the quark dressing function Bðp2Þ and normalize the
amplitude by dividing through the pion decay constant fπ ,

Γi
πðp;PÞ ¼ τiγ5

Bðp2Þ
fπ

: ðA5Þ

For light quarks, the difference between calculated leading
order amplitude and this approximation is at the level of a

few percent; see, e.g., [73] and references therein.
Therefore, we use this simplified form.

APPENDIX B: POLES OF THE QUARK
PROPAGATOR

In the truncations of the quark DSE used in this paper,
the quark propagator features pairs of complex conjugate
poles in the complex plane (see, e.g., [74]). In order to
facilitate the use of the quark propagators and easily
identify the analytic structures generated by those poles
in the form factor and vertex calculations, it is useful to
parametrize the quark propagator simply as a sum of poles
(see, e.g., [75]),

SðpÞ ¼ −ipσvðp2Þ þ σsðp2Þ;

σvðp2Þ ¼
Xn
i

�
αi

p2 þmi
þ α�i
p2 þm�

i

�
;

σsðp2Þ ¼
Xn
i

�
βi

p2 þmi
þ β�i
p2 þm�

i

�
; ðB1Þ

where the parameters mi, αi, βi can be obtained by fitting
the corresponding quark DSE solution along the p2 real
axis or, alternatively, on a parabola in the complex plane
that does not enclose the poles.
In the numerical solution of the quark DSE in the

complex plane, we tested fits with one real and one pair
of complex conjugated poles, with two pairs of complex
conjugated poles and with three pairs of complex con-
jugated poles. Based on this tests, we concluded that n ¼ 2
pairs of complex conjugated poles provided a precise fit,
and as the use of three pairs of poles did not provide any
further improvement, the reported calculations have been
performed based on fits with two pairs of poles.

FIG. 8. Truncations used herein for the BSE interaction kernel K (upper diagram) and the quark DSE one (lower diagram). In the
upper diagram, the terms on the right-hand side correspond to the rainbow-ladder, pion exchange, and s- and u-channel pion decay
contributions to the truncation, respectively. The s- and u-channel pion decay terms do not contribute to the quark DSE.

10Further details on applying contour deformations for per-
forming the numerical integrations in the context of DSEs and
BSEs can be found in Refs. [46,70–72] and references therein.
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